
Online Graph Prediction with Random Trees

Nicolò Cesa-Bianchi
Università di Milano, Italy
cesa-bianchi@dsi.unimi.it

Claudio Gentile
Università dell’Insubria, Italy
claudio.gentile@uninsubria.it

Fabio Vitale
Università di Milano, Italy
fabio.vitale@unimi.it

1 Introduction

In online transductive graph prediction a learner is initially given an undirected graph G = (V,E) with
unknown binary labels y = (y1, . . . , yn) ∈ {−1,+1}n assigned to the vertices V = {1, . . . , n}. At time
t = 1 an arbitrary vertex i1 ∈ V is selected and the learner must predict its label yi1 ∈ {−1,+1}. Then
yi1 is revealed and a new vertex i2 �= i1 of V is selected. This process goes on for t = 1, 2, . . . , n until all
vertices of G have been selected. The learner’s goal is to minimize the number of prediction mistakes.
Online linear learners, such as the Perceptron algorithm, can be applied to this problem by embedding V
in Rn via a map that transforms node i to the i-th coordinate versor ei ∈ Rn. For example, the graph
Perceptron algorithm [4, 5] predicts the label of ei using the linear kernel K = L+

G + 11�, where LG is
the Laplacian of G, L+

G its pseudoinverse, and 1 = (1, . . . , 1)�. The resulting mistake bound is in general
of the form ΦG(y)

�
1 + RG

�
, where ΦG(y) is the labelling cutsize, that is the number of edges in G whose

endpoints have different labels (we call these φ-edges), and RG = maxi,j ri,j is the resistance diameter of
G. Here ri,j denotes the effective resistance between i and j.
A variant of this approach considers running the graph Perceptron on a spanning tree T of G [2]. The
corresponding mistake bound is of the order ΦT (y)DT , where DT is the diameter of the chosen tree. This
improves on the cut size since ΦT (y) ≤ ΦG(y) but, on the other hand, DT = Θ(DG) where DG is the
diameter of G. Note that DG can be much larger than RG.
A different technique [3] attempts to control DT by linearizing T via a depth-first visit. This gives a line
graph S (the so-called spine of G) such that ΦS(y) ≤ 2 ΦT (y). By running 1-Nearest Neighbor (1-NN)
prediction on S, one can prove [3] the mistake bound O

�
ΦT (y) ln(n)

�
. In [2] it is suggested to pick T

in order to minimize the diameter DT . However, since the adversary may concentrate all φ-edges on the
chosen tree T , there is no guarantee that ΦT (y) remains small.
In this extended abstract two main issues are investigated: the best choice of T , and the best way of predict-
ing once T is given.

2 Prediction on a spanning tree

When labels y on V are adversarially chosen, the natural choice is to draw T uniformly at random among
all spanning trees of G. By exploiting Kirchoff’s equivalence between the effective resistance ri,j and the
probability that (i, j) ∈ E belongs to a random spanning tree, we immediately get the expected mistake
bound O

�
ΦR(y) ln(n)

�
for 1-NN on the linearized random tree, where ΦR(y) = 1

4

�
(i,j)∈E ri,j(yi − yj)2

is the resistance-weighted cutsize. This bound is significantly better than previous ones in certain cases.
In fact, on an unweighted graph with n nodes, the effective resistance ri,j of an edge (i, j) always lies in

1



[2/n, 1]. In particular, ri,j is very small when (i, j) is located in a densely connected area of the graph, while
ri,j = 1 when (i, j) is a bridge edge. For instance, in a dense graph where ri,j = O(1/n) for all (i, j) ∈ E,
the adversary may choose y so as to concentrateΘ(n) φ-edges on any specific tree, and yet ΦR(y) = O(1).
For “most” graphs, a random spanning tree can be sampled with a random walk in time O(n lnn) [1],
although all known techniques take Θ(n3) in the worst case.
The next question we consider is whether one can further improve on this bound by efficiently predicting
directly the nodes of T , rather than applying 1-NN to the spine [3] or applying a suitable Laplacian-based
kernelK to T [2]. To this end we introduce a new algorithm for predicting labelled trees.
The analysis of this algorithm is based on the simple notion of cluster. A cluster C of a labelled tree
T is any maximal subtree of T containing no φ-edges. We bound the number of mistakes made by the
algorithm in terms of the cutsize ΦT (y) and the diameter of the clusters which T is partitioned into by y.
Let C be the set of all clusters of T induced by a given labelling y, dC be the diameter of cluster C, and
DC = maxC∈C dC ≤ DT be the maximum diameter over all such clusters. Finally, letΦC(y) be the number
of φ-edges incident to cluster C.

Theorem 1 [Proof omitted.] There exists an algorithm that, when run on a tree T with n nodes, makes a
the number of mistakes bounded by

O

�
�

C∈C
ΦC(y) log dC

�
= O

�
ΦT (y) log DC

�
.

Both the total space required by the algorithm and the running time per label are O(n).

Intuitively, this algorithm always tries to predict a node it with the label minimizing the size of the cut
consistent with all labels seen so far. The algorithm does so by maintaining a collection of disjoint subtrees
partially covering the graph. The label of the next node it is predicted according to whether the it belongs
to a subtree or not. In the latter case, the algorithm predicts yit through yk, where k is the node closest to
yit in the collection of subtrees. If the label of k is not known yet, then the algorithm acts as if it had been
asked to predict yk at time t. In the special case when T is a line graph this algorithm is equivalent to 1-NN.
Details, performance analysis, and complexity analysis of the algorithm will appear in the full paper.
Since the above algorithm works for any tree, we could combine it with the random spanning tree approach
mentioned at the beginning of this section. This would immediately yield a prediction bound holding in
expectation for any undirected (and unweighted) graph. However, we believe the algorithm of Theorem 1 is
interesting in its own right in that it efficiently deals with an important class of graphs.
We now briefly turn to lower bounds. The following is not hard to prove: given a line graph S with n nodes
and any cutsize Φ ≤ n−1, for any deterministic prediction algorithm there exists a labelling y such that the
algorithm makes Ω

�
Φ log(n/Φ)

�
mistakes. This result can be used to build a more general lower bound that

holds for any labelled tree. This lower bound has roughly the same form as the upper bound in Theorem 1,
though it is expressed in terms of slightly different quantities.

Theorem 2 Let T be a tree with n nodes and Φ φ-edges. Then an adversarial strategy exists that forces

any deterministic algorithm to make at least order of max
Z−1�

i=1

φi log
�
�i

�
φi

�
mistakes, where the maximum

is over all possible decompositions of T into Z − 1 line graphs with �1, �2, . . . , �Z−1 edges, and over all
possible allocations φ1, . . . ,φZ−1 of Φ φ-edges to them.

Proof: (Sketch) Any tree T with Z leaves can be always decomposed into Z − 1 line graphs. One way of
doing so is to operate in a sequence of Z−1 steps as follows. In the first step, let z1 and z2 be two leaf nodes

2



of T (say the ones furthest apart), and let T1 be the line graph made up of the nodes on the (unique) path
connecting z1 and z2 (including both ends). In the generic i-th step, a node zi not included in previously
chosen paths is selected. Let z�i be the closest (w.r.t. the distance on the tree) node to zi among the nodes
belonging to previously selected lines, and Ti be the (unique) path connecting zi and z�i (including both zi

and z�i). Once this decomposition is performed (notice that many such decompositions are possible), we
end up with a set of Z − 1 line graphs Ti connected to one another by a single node. We clearly have�Z−1

i=1 �i = n − 1, where �i in the number of edges of Ti. The adversary is then free to allocate a total of
Φ φ-edges over the Z − 1 line graphs and then follow the above mentioned line graph adversarial strategy
on each line independently. Denote by φi the number of φ-edges allocated to Ti. A “legal” adversarial
allocation satisfies φi ≤ �i and

�Z−1
i=1 φi = Φ. �

We are currently working on the case when the nodes of the undirected graph (known ahead of time) have
linear functions associated with them. A direct approach based on Laplacians kernels seem to lead to
vacuous results.

References

[1] A. Broder. Generating random spanning trees. In Proc. 30th FOCS, pages 442–447. IEEE Press, 1989.

[2] S.R. Galeano and M. Herbster. A fast method to predict the labeling of a tree. Graph Labeling
Workshop (ECML 2007).

[3] M. Herbster. On-line prediction on large diameter graphs. In NIPS 22, MIT Press, 2009.

[4] M. Herbster, M. Pontil, and L. Wainer. Online learning over graphs. In Proc. 22nd ICML, pages
305–132. ACM Press, 2005.

[5] M. Herbster and M. Pontil. Prediction on a graph with the Perceptron. In NIPS 19, pages 577–584.
MIT Press, 2007.

3


