
Research proposal: Generic programming —
algorithms and tools

Institution: Department of Computing, University of Copenhagen
(DIKU)

Project duration: 1.1.2006–31.12.2008
Principal investigator: Jyrki Katajainen, Assoc. Prof.
Other investigators: Hervé Brönnimann, Ass. Prof., Polytechnic University

Christopher Derek Curry, M. Sc., Netcompany A/S
Amr Elmasry, Ph.D., Alexandria University
Claus Jensen, M. Sc. (2005 expected)
Andrei Bjarke Moskvitin Josephsen, B. Sc.
Stephan Lynge, B. Sc.
Torben Ægidius Mogensen, Assoc. Prof.
Fabio Vitale, M. Sc. (2005 expected), University of In-
subria

Academic partners: Robert Glück, Programming-language group, Univer-
sity of Copenhagen
Rasmus Pagh, Algorithmics group, IT University of
Copenhagen
Sibylle Schupp, Software-systems group, Chalmers Uni-
versity of Technology

Abstract

The objective of generic programming is to develop software compo-
nents that allow the highest level of reuse, modularity, and usability.
The theoretical challenge taken in this project is to provide genericity
without loss of efficiency. The primary goal of this project is to design
and analyse efficient generic software components, and provide imple-
mentations of such components in the form of program-library modules.
The secondary goal is to develop software tools which make the use and
development of generic program libraries easier.

1. Background

An algorithm is a set of instructions that specifies the sequence of oper-
ations needed for solving a computational problem, starting from a given
set of inputs, if any, and ending at a set of desired outputs, which may in-
clude side-effects on associated data structures. Traditionally1, it is required
that each operation is precisely defined (definiteness), that an algorithm

1 Donald E. Knuth, Fundamental Algorithms, The Art of Computer Programming 1, 3rd
Edition, Addison Wesley Longman (1997), § 1.1

CPH STL Report 2005-5, August 2005. Revised September and October 2005.

http://www.diku.dk/~jyrki/
http://www.diku.dk/~glueck/
http://www.itu.dk/people/pagh/
http://www.cs.chalmers.se/~schupp/


2 Jyrki Katajainen

is effective in the sense that its operations are sufficiently primitive to be
carried out in a finite length of time (effectiveness), and that an algorithm
always terminates (finiteness). In a generic algorithm the requirement
of definiteness is relaxed by letting an algorithm operate on unspecified data
types. A generic algorithm is supposed to work for all data types having a
given common structure; of course, the amount of such data types can be
infinite. A generic algorithm is made definite first after the parametrized
data types are specified.

As a concrete example, consider a sorting algorithm which sorts a given
sequence of elements in-place in nondecreasing order with respect to a given
ordering relation. The signature of such an algorithm could be as follows:

sort�element E, sequence�E� S, ordering�E� F �
inputs: s of type S and f of type F

outputs: none but s is modified.
That is, the algorithm takes three type parameters E, S, and F , and two
data parameters s and f . The type categories element , sequence, and
ordering are to be defined separately; and naturally, the categories sequence

and ordering should operate on the same type of elements to be compatible.
According to Alexander Stepanov2, who was the principal designer and

the original implementor of the C++ Standard Template Library (STL), the
objective of generic programming “is to develop a taxonomy of algorithms,
data structures, memory allocation mechanisms, and other software artifacts
in a way that allows the highest level of reuse, modularity, and usability”.
As pointed out by Musser et al.3, generic algorithms were already studied
in the 1970’s under the name algorithm schemas, but generic programming
became popular first after the development of the STL, which later became
part of the C++ standard library. In algorithmics community, however, spe-
cific issues related to the design, analysis, and implementation of generic
algorithms have not been considered until recently.

In performance engineering the goal is to translate algorithms into
efficient computer programs, efficient both with respect to execution time
and the amount of space used. The subject is also called algorithm engi-
neering .

At the Department of Computing4 at the University of Copenhagen the
performance engineering laboratory5 (PE-lab) was founded at the beginning
of 1999. The mission of the PE-lab is to educate elite programmers and to
do high-quality research related to all aspects of programming, performance
programming in particular. Since the foundation of the laboratory one doc-
tor and 16 masters have completed their studies under the supervision of the

2 David R. Musser, Gillmer J. Derge, and Atul Saini, STL Tutorial and Reference Guide:

C++ programming with the Standard Template Library, 2nd Edition, Addison-Wesley
(2001), xxi-xxii
3 David Musser, Sibylle Schupp, and Rüdifer Loos, Requirement oriented programming,
Generic Programming, Lecture Notes in Computer Science 1766, Springer-Verlag, 12–24
4 http://www.diku.dk/
5 http://www.diku.dk/research-groups/performance-engineering/

http://www.diku.dk/
http://www.diku.dk/research-groups/performance-engineering/
http://www.diku.dk/
http://www.diku.dk/research-groups/performance-engineering/


Research proposal: Generic programming — algorithms and tools 3

principal investigator (including Claus and Fabio who are expected to finish
their M. Sc. studies this year). Of the students supervised, Jeppe Nejsum
Madsen was awarded the best-M. Sc.-thesis-in-2003 prize by Dansk Selskab
for Datalogi6.

The goal in the research, for which we apply support, is to design and
analyse generic algorithms, and to provide industry-strength implementa-
tions of the developed algorithms in the form of program-library modules.
The total funding applied is 414 000 DKK from FNU (rammebevilling) and
2 880 000 DKK from FTP (a research assistant and a Ph.D. student), to
be distributed over the years 2006, 2007, and 2008 (for further details, see
appendix 5 of application form no. 1).

The planned research is detailed in §§ 2 and 3; these sections are written
for experts in computing and can be skipped by other readers. Some new
algorithmic problems raised by genericity are discussed in § 2. Based on
the experience with the CPH STL7 project, which was initiated in autumn
2000, we know that generic programming is tedious, so much of our imple-
mentation efforts will be spent on the development of tools that make the
use and implementation of generic program libraries easier. The tools that
we have at the top of our wish list are given in § 3. The ultimate goal is to
generate efficient programs automatically.

The actual research will be carried out in collaboration between the stu-
dents associated with the PE-lab and other investigators including the prin-
cipal investigator. The project group is backed up by our academic partners
which are all well-known figures in the field: Robert Glück8 (program com-
mittee co-chair for a forth-coming conference on generative programming
GPCE’059), Rasmus Pagh10 (program committee member for two forth-
coming theory conferences ICALP’06 and SWAT’06), and Sibylle Schupp11

(program committee co-chair for a forth-coming workshop on library-centric
software design LCSD’0512). To encourage new students to take part in the
project, Christopher Derek Curry, Robert Glück, and the principal investi-
gator will organize a one-week workshop on generative software development
at the beginning of 2006 (week 5).

2. New types of algorithmic problems

The main body of the research done in the PE-lab is basic research — both
theoretical and empirical. Often we have no specific application domain
in mind, but try to develop general program-library components that can
be used in wide range of applications in all major scientific, engineering,
6 http://www.datalogi.dk/
7 http://www.cphstl.dk/
8 http://www.diku.dk/~glueck/
9 http://www.gpce.org/05/
10 http://www.itu.dk/people/pagh/
11 http://www.cs.chalmers.se/~schupp/
12 http://lcsd05.cs.tamu.edu/

http://www.datalogi.dk/
http://www.datalogi.dk/
http://www.cphstl.dk/
http://www.diku.dk/~glueck/
http://www.gpce.org/05/
http://www.itu.dk/people/pagh/
http://www.cs.chalmers.se/~schupp/
http://lcsd05.cs.tamu.edu/
http://www.datalogi.dk/
http://www.cphstl.dk/
http://www.diku.dk/~glueck/
http://www.gpce.org/05/
http://www.itu.dk/people/pagh/
http://www.cs.chalmers.se/~schupp/
http://lcsd05.cs.tamu.edu/


4 Jyrki Katajainen

and business areas. In this section we mention a few algorithmic problems
which we have encountered in our recent research, and which we have listed
as potential topics for further study. The problems listed should give a
flavour of the theoretical research planned for the next three years.

Unknown methods as a resource

A generic algorithm consists of two parts: the description of the opera-
tions to be executed and the description of the requirements posed for the
parametrized types, which may involve type definitions, attribute signatures,
and method signatures. Of these the methods are most significant, because
the cost of the calls of these methods is unknown. Therefore, it is natural
to minimize the number of calls of the unspecified methods.

Let us return to the generic sort algorithm. Normally, the elements are
assumed to be assignable so the methods to be supported are copy con-
struction and assignment operation. The cost of these operations may be
high if the elements are large objects like strings. Similarly, the cost of the
the comparison function is unknown. It is not until recently13 an in-place
sorting algorithm was devised which performs at most O(n) element moves
and O(n log2 n) element comparisons, where n is the number of elements to
be sorted. If space for 4n extra bits is available, almost optimal bounds are
achievable14: n log2 n+0.59n element comparisons and 2.5n element moves.

Alternatively, the comparison function can be expensive, e.g. when sorting
n strings that are all k characters long, so the objective is to minimize the
number of character comparisons. It is well-known that classical sorting al-
gorithms require O(nk log2 n) character comparisons, whereas an algorithm
performing only O(nk + n log2 n) character comparisons is known even if
the algorithm is required to operate in-place15. Therefore, it must be possi-
ble to specialize a generic sorting algorithm such that the improved sorting
algorithm is called, instead of a default algorithm, when strings of charac-
ters are to be sorted. However, such specialization mechanisms seem to be
underdeveloped.

Strength of iterators as a resource

Iterators are objects that point to other objects, call them elements. An
iterator is a generalization of an array pointer; it can be used to iterate
over a collection of elements or simply to access the element pointed to.

13 Gianni Franceschini and Viliam Geffert, An in-place sorting with O(n log n) compar-
isons and O(n) moves, Journal of the ACM 52 (2005), 515–537
14 Jyrki Katajainen and Fabio Vitale, Navigation piles with applications to sorting, pri-
ority queues, and priority deques, Nordic Journal of Computing 10 (2003), 238-262
15 Gianni Franceschini and Roberto Grossi, Optimal in-place sorting of vectors and
records, Proceedings of the 32nd International Colloquium on Automata, Languages and

Programming, Lecture Notes in Computer Science 3580, Springer-Verlag, 2005, 90–102



Research proposal: Generic programming — algorithms and tools 5

As Dehnert and Stepanov16 write “the best algorithms for some functions
(e.g., rotate and random shuffle) differ dramatically for bidirectional and
random access iterators”. This is true, but often the asymptotic complexity
of such functions is the same for both types of iterators. Therefore, in the
C++ standard the requirements specified for some generic algorithms are
too strong and for some they are too weak. For example, it is required that
the sequence given for the sort function supports random access iterators,
but it is known that in-place sorting can be done efficiently using forward
iterators17. In contrast to this, binary search is defined for forward iterators
even if for them it has linear cost, not logarithmic as it should. Based
on these observations the iterator requirements stated in the C++ standard
should be revisited and revised.

Guaranteeing iterator validity

An iterator and the element pointed to live a close symbiosis; when the
element is moved, the iterator may become invalid if it is not updated ac-
cordingly. A data structure is said to provide iterator validity if the
iterators to its elements are kept valid at all times independent of the el-
ement moves done. In the CPH STL it is required that all fundamental
data structures (singly/doubly linked lists, singly/doubly resizable arrays,
unordered/ordered dictionaries, and singly/doubly-ended priority queues)
should support bidirectional iterators, keep the iterators valid under mod-
ifications, execute all iterator operations in O(1) time in the worst case,
and use linear space on the number of elements stored. These requirements
should be compared to those given in the C++ standard: iterator operations
are only required to take amortized constant time, the rules for iterator
validity are quite arbitrary, and no space bounds are specified.

Theoretically, the issue of iterator validity is settled, but the STL contain-
ers allow a very restricted form of iteration. It is not allowed to perform
insertions or deletions in a container during a traversal of the container; if
these are made, no guarantee is given that all elements will be met during
the traversal. Therefore, it might be necessary to consider more general
forms of iterator validity like complete traversal mechanisms18 or partial
persistent data structures19.

16 James C. Dehnert and Alexander Stepanov, Fundamentals of generic programming,
Generic Programming, Lecture Notes in Computer Science 1766, Springer-Verlag, 1–11
17 Jyrki Katajainen, Tomi Pasanen, and Jukka Teuhola, Practical in-place mergesort,
Nordic Journal of Computing 3 (1996), 27–40
18 David R. Musser and Arturo J. Sánchez-Rúız, Theory of generality of complete traver-
sals, Generic Programming, Lecture Notes in Computer Science 1766, Springer-Verlag,
91–101
19 Gerth Stølting Brodal, Partially persistent data structures of bounded in degree with
constant update time, Nordic Journal of Computing 3 (1996), 238–255

http://www.cphstl.dk


6 Jyrki Katajainen

Element constructions/destructions as a resource

It is natural to require that for a sequence — like a singly/doubly linked
list or a singly/doubly resizable array — every insertion/deletion of an
element at the ends of the sequence performs at most one element con-
struction/destruction. In theoretically oriented papers the issue about el-
ement constructions/destructions is totally ignored making the algorithms
proposed hopelessly slow in a generic environment. In most STL imple-
mentations, e.g. in the Silicon Graphics Inc. (SGI) implementation, each
update at the ends requires O(1) element constructions/destructions in the
amortized sense.

In the CPH STL each such update is required to have the worst-case cost
of O(1). For lists and singly resizable arrays it is possible to give the stronger
guarantee of at most one construction/destruction per update, but for de-
ques this stronger guarantee is difficult to achieve20. In a recent study21,
we observed that for doubly-ended priority queues a similar observation ap-
plies, even though for singly-ended priority queues the stronger guarantee is
attainable.

3. Development challenges

In the CPH STL project we have been able to create an interesting repository
of programs. The development challenges mentioned in this section are in
one way or other related to the development and management of this code
repository. Even if the wishes are specific for the CPH STL development,
in which C++ is used, we expect that in a modified form the tools developed
would have wider use.

Extensions to the CPH STL

Currently, we are developing the following extensions to the original STL:
arrays, unordered dictionaries, and priority queues. Other natural avenues
for extending the library is to consider generic algorithms for string manip-
ulation. Already in the SGI implementation of the STL provided the rope
class as an alternative to a string class. In addition to a string container, one
should systematically consider traditional string algorithms and make them
generic so that they could be applied to solve large-alphabet problems (as
in Unicode strings) and small-alphabet, long-pattern problems (as in DNA
strings). For an initial work in this direction, see the paper by Musser and
Nishanov22.
20 Jyrki Katajainen and Bjarke Buur Mortensen, Experiences with the design and im-
plementation of space-efficient deques, Proceedings of the 5th Workshop on Algorithm

Engineering, Lecture Notes in Computer Science 2141, Springer-Verlag (2001), 39–50
21 Amr Elmasry, Claus Jensen, and Jyrki Katajainen, Improved worst-case bounds for
double-ended priority queues, submitted (2005)
22 David R. Musser and Gor V. Nishanov, A fast generic sequence matching algorithm,
Web document (1998)

http://www.cphstl.dk
http://www.cphstl.dk
http://www.cphstl.dk


Research proposal: Generic programming — algorithms and tools 7

C++ without C

When teaching C++ new students have often difficulties in accepting the
differences between built-in types and user-defined types, or the C part in
C++ in general. Our goal is to provide alternative constructs for the C part
of C++. In teaching struct can be avoided since it is only a synonym for
a public class. Using type lists23 built-in types can be encapsulated in a
portable way. Also, the C array could be made a container which may be
allocated both from the stack and from the heap; so genericity with respect
to allocators is necessary.

In teaching, the efficiency is not the primary concern. It is more important
that after these changes clean object-based programming would be possible.
However, after minor modifications most compilers should be able to support
the encapsulated types with small abstraction penalty. As a consequence of
these additions, the use of generic algorithms could be simplified so that
they take sequences as inputs, not iterators.

C++ with categories

Template programming can be tedious; a small misunderstanding of the C++
type system may generate a long error message. Even more frustrating is
the fact that not all compilers can handle constructs specified in the C++
standard, which was ratified in 1998. In our opinion, the main problem in
C++ templates is that they are typeless. This makes compiler construction
a real art. One possible improvement is to disallow general genericity, and
create a language that only supports constrained genericity. Our work name
for such a language is C++ with categories. This idea is by no means new;
already in 1995 Alexander Stepanov dreamed about such a language24.

For example in our sorting algorithm, the type category element could be
defined as follows:

category element {
@(const @&); // copy constructor
@& operator=(const @&); // assignment operator

};
Here the syntax is an amalgam of C++ and the language-independent spec-
ification language proposed by Zamulin25. In particular, @ means the data
type being specified.

Categories can be used to express the interactions between different generic
components. For example, in the current specification of the STL these in-
teractions are implicit, and therefore these may be difficult to understand
by programmers as well as compilers. We would not be as ambitious as
23 Andrei Alexandrescu, Modern C++ Design: Generic Programming and Design Pat-

terns Applied, Addison-Wesley (2001), § 3
24 Al Stevens interviews Alex Stepanov, Web document (1995). Available at http://
www.sgi.com/tech/stl/drdobbs-interview.html
25 Alexandre V. Zamulin, Language independent container specification, Generic Pro-

gramming, Lecture Notes in Computer Science 1766, Springer-Verlag, 192–205

http://www.sgi.com/tech/stl/drdobbs-interview.html
http://www.sgi.com/tech/stl/drdobbs-interview.html


8 Jyrki Katajainen

the authors of some earlier proposals; it seems to be difficult to let a com-
piler check the axioms to be fulfilled by the operations and the complexity
requirements of the operations. Our main purpose of proposing C++ with
categories is to automate the concept checking which has been successfully
implemented above the STL components26. Using the developed tools it
is possible to build a preprocessor that translates programs written in C++
with categories into C++.

Further development of our benchmark tool

The benchmark tool benz was built at the end of 2002 and at the beginning
of 2003 by the principal investigator. Later the students associated with the
PE-lab have added some new functionality to the tool. Using this tool it
has been possible for us to speed up the process of benchmarking programs.
Earlier it could take a week to build the necessary scaffolding code for a
single module. Now this task can be accomplished in an afternoon or so.
The functionality of the tool should be improved before it can be taken into
wider use. Moreover, the documentation is only available in Danish.

Automating unit testing

In user-driven software development a software product is released as quickly
as possible, and further development is based on customer feedback. Often
serious errors are found when the product is in production use. In the CPH
STL project we have not been able to provide an official release of the library
for two reasons. First, we have not had human resources to do the testing
rigorously. Second, we have not wanted to release a defect product. A
possible remedy from this dilemma is to automate unit testing.

Technically, such an automation is possible (see, e.g. the paper by Pel-
liccione et al.27 and the references therein). As a first step, one could try
this approach for the C++ header <algorithm>. Based on a specification of
the generic algorithms and hints, for which data these should be tested, one
could generate test programs automatically. Here the challenge is to design
a suitable specification language — a little language28 as it is called in the
literature.

Automating documentation

In the CPH STL project the development work is documented in our design
documents which are made public via our website. The main problem with
26 See the Boost concept check library, which is available at http://www.boost.org/
27 Patrizio Pelliccione, Henry Muccini, Antonio Bucchiarone, and Fabrizio Facchini,
TeStor: deriving test sequences from model-based specifications, Proceedings of the 8th

International SIGSOFT Symposium on Component-Based Software Engineering, Lecture

Notes in Computer Science 3489, Springer-Verlag (2005), 267–282
28 Jon Bentley, More Programming Pearls: Confessions of a Coder, Addison-Wesley Pub-
lishing Company (1988), § 9

http://www.cpshtl.dk
http://www.cpshtl.dk
http://www.cphstl.dk
http://www.boost.org/


Research proposal: Generic programming — algorithms and tools 9

the design documents is that after some changes the documentation is no
more up-to-date.

Most parts of the website are generated automatically from the files we
have in our CVS repository. However, the system used for the generation of
web pages could be considerably improved; in particular, it should include
the documentation of the source code itself. The main challenge in the design
of such a tool is to understand the format in which the CVS repository stores
its information. From this information interesting data could be displayed
on the website.

On behalf of the research group

Copenhagen, 30 August 2005

Jyrki Katajainen
Assoc. Prof., Ph. D.


	Background
	New types of algorithmic problems
	Development challenges

