
A Linear Time Active Learning Algorithm
for Link Classification∗

Nicolò Cesa-Bianchi
Dipartimento di Informatica

Università degli Studi di Milano, Italy

Claudio Gentile
Dipartimento di Scienze Teoriche ed Applicate

Università dell’Insubria, Italy

Fabio Vitale
Dipartimento di Informatica

Università degli Studi di Milano, Italy

Giovanni Zappella
Dipartimento di Matematica

Università degli Studi di Milano, Italy

Abstract

We present very efficient active learning algorithms for link classification
in signed networks. Our algorithms are motivated by a stochastic model
in which edge labels are obtained through perturbations of a initial sign
assignment consistent with a two-clustering of the nodes. We provide a the-
oretical analysis within this model, showing that we can achieve an optimal
(to whithin a constant factor) number of mistakes on any graph G = (V,E)
such that |E| = Ω(|V |3/2) by querying O(|V |3/2) edge labels. More gen-
erally, we show an algorithm that achieves optimality to within a factor
of O(k) by querying at most order of |V | + (|V |/k)3/2 edge labels. The
running time of this algorithm is at most of order |E|+ |V | log |V |.

1 Introduction

A rapidly emerging theme in the analysis of networked data is the study of signed networks.
From a mathematical point of view, signed networks are graphs whose edges carry a sign
representing the positive or negative nature of the relationship between the incident nodes.
For example, in a protein network two proteins may interact in an excitatory or inhibitory
fashion. The domain of social networks and e-commerce offers several examples of signed
relationships: Slashdot users can tag other users as friends or foes, Epinions users can rate
other users positively or negatively, Ebay users develop trust and distrust towards sellers
in the network. More generally, two individuals that are related because they rate similar
products in a recommendation website may agree or disagree in their ratings.

The availability of signed networks has stimulated the design of link classification algorithms,
especially in the domain of social networks. Early studies of signed social networks are from
the Fifties. E.g., [8] and [1] model dislike and distrust relationships among individuals as
(signed) weighted edges in a graph. The conceptual underpinning is provided by the theory
of social balance, formulated as a way to understand the structure of conflicts in a network
of individuals whose mutual relationships can be classified as friendship or hostility [9]. The
advent of online social networks has revamped the interest in these theories, and spurred a
significant amount of recent work —see, e.g., [7, 11, 14, 3, 5, 2], and references therein.

Many heuristics for link classification in social networks are based on a form of social balance
summarized by the motto “the enemy of my enemy is my friend”. This is equivalent to
saying that the signs on the edges of a social graph tend to be consistent with some two-
clustering of the nodes. By consistency we mean the following: The nodes of the graph can
be partitioned into two sets (the two clusters) in such a way that edges connecting nodes

∗This work was supported in part by the PASCAL2 Network of Excellence under EC grant
216886 and by “Dote Ricerca”, FSE, Regione Lombardia. This publication only reflects the authors’
views.

1

from the same set are positive, and edges connecting nodes from different sets are negative.
Although two-clustering heuristics do not require strict consistency to work, this is admittely
a rather strong inductive bias. Despite that, social network theorists and practitioners
found this to be a reasonable bias in many social contexts, and recent experiments with
online social networks reported a good predictive power for algorithms based on the two-
clustering assumption [11, 13, 14, 3]. Finally, this assumption is also fairly convenient from
the viewpoint of algorithmic design.

In the case of undirected signed graphs G = (V,E), the best performing heuristics exploiting
the two-clustering bias are based on spectral decompositions of the signed adiacency matrix.
Noticeably, these heuristics run in time Ω

�
|V |2

�
, and often require a similar amount of

memory storage even on sparse networks, which makes them impractical on large graphs.

In order to obtain scalable algorithms with formal performance guarantees, we focus on the
active learning protocol, where training labels are obtained by querying a desired subset
of edges. Since the allocation of queries can match the graph topology, a wide range of
graph-theoretic techniques can be applied to the analysis of active learning algorithms. In
the recent work [2], a simple stochastic model for generating edge labels by perturbing some
unknown two-clustering of the graph nodes was introduced. For this model, the authors
proved that querying the edges of a low-stretch spanning tree of the input graph G = (V,E)
is sufficient to predict the remaining edge labels making a number of mistakes within a
factor of order (log |V |)2 log log |V | from the theoretical optimum. The overall running time
is O(|E| ln |V |). This result leaves two main problems open: First, low-stretch trees are a
powerful structure, but the algorithm to construct them is not easy to implement. Second,
the tree-based analysis of [2] does not generalize to query budgets larger than |V |− 1 (the
edge set size of a spanning tree). In this paper we introduce a different active learning
approach for link classification that can accomodate a large spectrum of query budgets.
We show that on any graph with Ω(|V |3/2) edges, a query budget of O(|V |3/2) is sufficient
to predict the remaining edge labels within a constant factor from the optimum. More in

general, we show that a budget of at most order of |V | +
� |V |

k

�3/2
queries is sufficient to

make a number of mistakes within a factor of O(k) from the optimum with a running time
of order |E|+(|V |/k) log(|V |/k). Hence, a query budget of Θ(|V |), of the same order as the
algorithm based on low-strech trees, achieves an optimality factor O(|V |1/3) with a running
time of just O(|E|).

At the end of the paper we also report on a preliminary set of experiments on medium-sized
synthetic and real-world datasets, where a simplified algorithm suggested by our theoretical
findings is compared against the best performing spectral heuristics based on the same
inductive bias. Our algorithm seems to perform similarly or better than these heuristics.

2 Preliminaries and notation

We consider undirected and connected graphs G = (V,E) with unknown edge labeling
Yi,j ∈ {−1,+1} for each (i, j) ∈ E. Edge labels can collectively be represented by the
associated signed adjacency matrix Y , where Yi,j = 0 whenever (i, j) �∈ E. In the sequel,
the edge-labeled graph G will be denoted by (G, Y).

We define a simple stochastic model for assigning binary labels Y to the edges of G. This
is used as a basis and motivation for the design of our link classification strategies. As
we mentioned in the introduction, a good trade-off between accuracy and efficiency in link
classification is achieved by assuming that the labeling is well approximated by a two-
clustering of the nodes. Hence, our stochastic labeling model assumes that edge labels are
obtained by perturbing an underlying labeling which is initially consistent with an arbitrary
(and unknown) two-clustering. More formally, given an undirected and connected graph
G = (V,E), the labels Yi,j ∈ {−1,+1}, for (i, j) ∈ E, are assigned as follows. First, the
nodes in V are arbitrarily partitioned into two sets, and labels Yi,j are initially assigned
consistently with this partition (within-cluster edges are positive and between-cluster edges
are negative). Note that the consistency is equivalent to the following multiplicative rule:
For any (i, j) ∈ E, the label Yi,j is equal to the product of signs on the edges of any path
connecting i to j in G. This is in turn equivalent to say that any simple cycle within the
graph contains an even number of negative edges. Then, given a nonnegative constant p < 1

2 ,
labels are randomly flipped in such a way that P

�
Yi,j is flipped

�
≤ p for each (i, j) ∈ E.

2

We call this a p-stochastic assignment. Note that this model allows for correlations between
flipped labels.

A learning algorithm in the link classification setting receives a training set of signed edges
and, out of this information, builds a prediction model for the labels of the remaining edges.
It is quite easy to prove a lower bound on the number of mistakes that any learning algorithm
makes in this model.
Fact 1. For any undirected graph G = (V,E), any training set E0 ⊂ E of edges, and any
learning algorithm that is given the labels of the edges in E0, the number M of mistakes
made by A on the remaining E \E0 edges satisfies EM ≥ p

��E \E0

��, where the expectation
is with respect to a p-stochastic assignment of the labels Y .

Proof. Let Y be the following randomized labeling: first, edge labels are set consistently
with an arbitrary two-clustering of V . Then, a set of 2p|E| edges is selected uniformly at
random and the labels of these edges are set randomly (i.e., flipped or not flipped with equal
probability). Clearly, P(Yi,j is flipped) = p for each (i, j) ∈ E. Hence this is a p-stochastic
assignment of the labels. Moreover, E \ E0 contains in expectation 2p

��E \ E0

�� randomly
labeled edges, on which A makes p

��E \ E0

�� mistakes in expectation.

In this paper we focus on active learning algorithms. An active learner for link classification
first constructs a query set E0 of edges, and then receives the labels of all edges in the query
set. Based on this training information, the learner builds a prediction model for the labels
of the remaining edges E \E0. We assume that the only labels ever revealed to the learner
are those in the query set. In particular, no labels are revealed during the prediction phase.
It is clear from Fact 1 that any active learning algorithm that queries the labels of at most
a constant fraction of the total number of edges will make on average Ω(p|E|) mistakes.

We often write VG and EG to denote, respectively, the node set and the edge set of some
underlying graph G. For any two nodes i, j ∈ VG, Path(i, j) is any path in G having i
and j as terminals, and |Path(i, j)| is its length (number of edges). The diameter DG of a
graph G is the maximum over pairs i, j ∈ VG of the shortest path between i and j. Given
a tree T = (VT , ET) in G, and two nodes i, j ∈ VT , we denote by dT (i, j) the distance
of i and j within T , i.e., the length of the (unique) path PathT (i, j) connecting the two
nodes in T . Moreover, πT (i, j) denotes the parity of this path, i.e., the product of edge
signs along it. When T is a rooted tree, we denote by ChildrenT (i) the set of children of
i in T . Finally, given two disjoint subtrees T �, T �� ⊆ G such that VT � ∩ VT �� ≡ ∅, we let
EG(T �, T ��) ≡

�
(i, j) ∈ EG : i ∈ VT � , j ∈ VT ��

�
.

3 Algorithms and their analysis

In this section, we introduce and analyze a family of active learning algorithms for link
classification. The analysis is carried out under the p-stochastic assumption. As a warm
up, we start off recalling the connection to the theory of low-stretch spanning trees (e.g.,
[4]), which turns out to be useful in the important special case when the active learner is
afforded to query only |V |− 1 labels.

Let Eflip ⊂ E denote the (random) subset of edges whose labels have been flipped in a
p-stochastic assignment, and consider the following class of active learning algorithms pa-
rameterized by an arbitrary spanning tree T = (VT , ET) of G. The algorithms in this class
use E0 = ET as query set. The label of any test edge e� = (i, j) �∈ ET is predicted as the
parity πT (e�). Clearly enough, if a test edge e� is predicted wrongly, then either e� ∈ Eflip

or PathT (e�) contains at least one flipped edge. Hence, the number of mistakes MT made
by our active learner on the set of test edges E \ ET can be deterministically bounded by

MT ≤ |Eflip|+
�

e�∈E\ET

�

e∈E

I
�
e ∈ PathT (e

�)
�
I
�
e ∈ Eflip

�
(1)

where I
�
·
�
denotes the indicator of the Boolean predicate at argument. A quantity which

can be related to MT is the average stretch of a spanning tree T which, for our purposes,
reduces to

1
|E|

�
|V |− 1 +

�
e�∈E\ET

��PathT (e�)
��
�
.

3

A stunning result of [4] shows that every connected, undirected and unweighted graph has
a spanning tree with an average stretch of just O

�
log2 |V | log log |V |

�
. If our active learner

uses a spanning tree with the same low stretch, then the following result holds.

Theorem 1 ([2]). Let (G, Y) = ((V,E), Y) be a labeled graph with p-stochastic assigned
labels Y . If the active learner queries the edges of a spanning tree T = (VT , ET) with
average stretch O

�
log2 |V | log log |V |

�
, then EMT ≤ p|E|×O

�
log2 |V | log log |V |

�
.

We call the quantity multiplying p |E| in the upper bound the optimality factor of the
algorithm. Recall that Fact 1 implies that this factor cannot be smaller than a constant
when the query set size is a constant fraction of |E|.

Although low-stretch trees can be constructed in time O
�
|E| ln |V |

�
, the algorithms are fairly

complicated (we are not aware of available implementations), and the constants hidden in
the asymptotics can be high. Another disadvantage is that we are forced to use a query set
of small and fixed size |V |− 1. In what follows we introduce algorithms that overcome both
limitations.

A key aspect in the analysis of prediction performance is the ability to select a query set
so that each test edge creates a short circuit with a training path. This is quantified by�

e∈E I
�
e ∈ PathT (e�)

�
in (1). We make this explicit as follows. Given a test edge (i, j)

and a path Path(i, j) whose edges are queried edges, we say that we are predicting label Yi,j

using path Path(i, j) Since (i, j) closes Path(i, j) into a circuit, in this case we also say that
(i, j) is predicted using the circuit.

Fact 2. Let (G, Y) = ((V,E), Y) be a labeled graph with p-stochastic assigned labels Y .
Given query set E0 ⊆ E, the number M of mistakes made when predicting test edges (i, j) ∈
E \E0 using training paths Path(i, j) whose length is uniformly bounded by � satisfies EM ≤

� p |E \ E0| .

Proof. We have the chain of inequalities EM ≤
�

(i,j)∈E\E0

�
1 − (1 − p)|Path(i,j)|

�
≤�

(i,j)∈E\E0

�
1− (1− p)�

�
≤
�

(i,j)∈E\E0
� p ≤ � p |E \ E0| .

For instance, if the input graph G = (V,E) has diameter DG and the queried edges are
those of a breadth-first spanning tree, which can be generated in O(|E|) time, then the
above fact holds with |E0| = |V | − 1, and � = 2DG. Comparing to Fact 1 shows that this
simple breadth-first strategy is optimal up to constants factors whenever G has a constant
diameter. This simple observation is especially relevant in the light of the typical graph
topologies encountered in practice, whose diameters are often small. This argument is at
the basis of our experimental comparison —see Section 4 .

Yet, this mistake bound can be vacuous on graph having a larger diameter. Hence, one may
think of adding to the training spanning tree new edges so as to reduce the length of the
circuits used for prediction, at the cost of increasing the size of the query set. A similar
technique based on short circuits has been used in [2], the goal there being to solve the link
classification problem in a harder adversarial environment. The precise tradeoff between
prediction accuracy (as measured by the expected number of mistakes) and fraction of
queried edges is the main theoretical concern of this paper.

We now introduce an intermediate (and simpler) algorithm, called treeCutter, which
improves on the optimality factor when the diameter DG is not small. In particular, we
demonstrate that treeCutter achieves a good upper bound on the number of mistakes
on any graph such that |E| ≥ 3|V |+

�
|V |. This algorithm is especially effective when the

input graph is dense, with an optimality factor between O(1) and O(
�

|V |). Moreover, the
total time for predicting the test edges scales linearly with the number of such edges, i.e.,
treeCutter predicts edges in constant amortized time. Also, the space is linear in the size
of the input graph.

The algorithm (pseudocode given in Figure 1) is parametrized by a positive integer k ranging
from 2 to |V |. The actual setting of k depends on the graph topology and the desired fraction
of query set edges, and plays a crucial role in determining the prediction performance.
Setting k ≤ DG makes treeCutter reduce to querying only the edges of a breadth-first
spanning tree of G, otherwise it operates in a more involved way by splitting G into smaller
node-disjoint subtrees.

4

In a preliminary step (Line 1 in Figure 1), treeCutter draws an arbitrary breadth-first
spanning tree T = (VT , ET). Then subroutine extractTreelet(T, k) is used in a do-while
loop to split T into vertex-disjoint subtrees T � whose height is k (one of them might have a
smaller height). extractTreelet(T, k) is a very simple procedure that performs a depth-
first visit of the tree T at argument. During this visit, each internal node may be visited
several times (during backtracking steps). We assign each node i a tag hT (i) representing
the height of the subtree of T rooted at i. hT (i) can be recursively computed during the
visit. After this assignment, if we have hT (i) = k (or i is the root of T) we return the
subtree Ti of T rooted at i. Then treeCutter removes (Line 6) Ti from T along with
all edges of ET which are incident to nodes of Ti, and then iterates until VT gets empty.
By construction, the diameter of the generated subtrees will not be larger than 2k. Let T
denote the set of these subtrees. For each T � ∈ T , the algorithm queries all the labels of
ET � , each edge (i, j) ∈ EG \ET � such that i, j ∈ VT � is set to be a test edge, and label Yi,j is
predicted using PathT �(i, j) (note that this coincides with PathT �(i, j), since T � ⊆ T), that
is, Ŷi,j = πT (i, j). Finally, for each pair of distinct subtrees T �, T �� ∈ T such that there exists
a node of VT � adjacent to a node of VT �� , i.e., such that EG(T �, T ��) is not empty, we query the
label of an arbitrarily selected edge (i�, i��) ∈ EG(T �, T ��) (Lines 8 and 9 in Figure 1). Each
edge (u, v) ∈ EG(T �, T ��) whose label has not been previously queried is then part of the
test set, and its label will be predicted as Ŷu,v ← πT (u, i�) · Yi�,i�� · πT (i��, v) (Line 11). That
is, using the path obtained by concatenating PathT �(u, i�) to edge (i�, i��) to PathT �(i��, v).

The following theorem1 quantifies the number of mistakes made by treeCutter. The

treeCutter(k) Parameter: k ≥ 2
Initialization: T ← ∅.
1. Draw an arbitrary breadth-first spanning tree T of G
2. Do
3. T � ← extractTreelet(T, k), and query all labels in ET �

4. T ← T ∪ {T �}

5. For each i, j ∈ VT � , set predict Ŷi,j ← πT (i, j)
6. T ← T \ T �

7. While (VT �≡ ∅)
8. For each T �, T �� ∈ T : T � �≡ T ��

9. If EG(T �, T ��) �≡ ∅ query the label of an arbitrary edge (i�, i��) ∈ EG(T �, T ��)
10. For each (u, v) ∈ EG(T �, T ��) \ {(i�, i��)}, with i�, u ∈ VT � and v, i�� ∈ VT ��

11. predict Ŷu,v ← πT �(u, i�) · Yi�,i�� · πT ��(i��, v)

Figure 1: treeCutter pseudocode.

extractTreelet(T, k) Parameters: tree T , k ≥ 2.
1. Perform a depth-first visit of T starting from the root.
2. During the visit
3. For each i ∈ VT visited for the |1 + ChildrenT (i)|-th time (i.e., the last visit of i)
4. If i is a leaf set hT (i) ← 0
5. Else set hT (i) ← 1 + max{hT (j) : j ∈ ChildrenT (i)}
6. If hT (i) = k or i ≡ T ’s root return subtree rooted at i

Figure 2: extractTreelet pseudocode.

requirement on the graph density in the statement, i.e., |V | − 1 + |V |2
2k2 + |V |

2k ≤
|E|
2 implies

that the test set is not larger than the query set. This is a plausible assumption in active
learning scenarios, and a way of adding meaning to the bounds.

Theorem 2. For any integer k ≥ 2, the number M of mistakes made by treeCutter on

any graph G(V,E) with |E| ≥ 2|V |− 2 + |V |2
k2 + |V |

k satisfies EM ≤ min{4k + 1, 2DG}p|E|,

while the query set size is bounded by |V |− 1 + |V |2
2k2 + |V |

2k ≤
|E|
2 .

We now refine the simple argument leading to treeCutter, and present our active link
classifier. The pseudocode of our refined algorithm, called starMaker, follows that of

1 Due to space limitations long proofs are presented in the supplementary material.

5

Figure 1 with the following differences: Line 1 is dropped (i.e., starMaker does not draw
an initial spanning tree), and the call to extractTreelet in Line 3 is replaced by a call
to extractStar. This new subroutine just selects the star T � centered on the node of G
having largest degree, and queries all labels of the edges in ET � . The next result shows that
this algorithm gets a constant optimality factor while using a query set of size O(|V |3/2).
Theorem 3. The number M of mistakes made by starMaker on any given graph G(V,E)
with |E| ≥ 2|V |− 2+2|V |

3
2 satisfies EM ≤ 5 p|E|, while the query set size is upper bounded

by |V |− 1 + |V |
3
2 ≤

|E|
2 .

Finally, we combine starMaker with treeCutter so as to obtain an algorithm, called
treeletStar, that can work with query sets smaller than |V |− 1+ |V |

3
2 labels. treelet-

Star is parameterized by an integer k and follows Lines 1–6 of Figure 1 creating a set
T of trees through repeated calls to extractTreelet. Lines 7–11 are instead replaced
by the following procedure: a graph G� = (VG� , EG�) is created such that: (1) each node
in VG� corresponds to a tree in T , (2) there exists an edge in EG� if and only if the two
corresponding trees of T are connected by at least one edge of EG. Then, extractStar
is used to generate a set S of stars of vertices of G�, i.e., stars of trees of T . Finally, for
each pair of distinct stars S�, S�� ∈ S connected by at least one edge in EG, the label of an
arbitrary edge in EG(S�, S��) is queried. The remaining edges are all predicted.
Theorem 4. For any integer k ≥ 2 and for any graph G = (V,E) with |E| ≥ 2|V | − 2 +

2
� |V |−1

k + 1
� 3

2 , the number M of mistakes made by treeletStar(k) on G satisfies EM =

O(min{k,DG}) p|E|, while the query set size is bounded by |V |− 1 +
� |V |−1

k + 1
� 3

2 ≤
|E|
2 .

Hence, even if DG is large, setting k = |V |1/3 yields a O(|V |1/3) optimality factor just by
querying O(|V |) edges. On the other hand, a truly constant optimality factor is obtained
by querying as few as O(|V |3/2) edges (provided the graph has sufficiently many edges). As
a direct consequence (and surprisingly enough), on graphs which are only moderately dense
we need not observe too many edges in order to achieve a constant optimality factor. It is
instructive to compare the bounds obtained by treeletStar to the ones we can achieve
by using the cccc algorithm of [2], or the low-stretch spanning trees given in Theorem 1.

Because cccc operates within a harder adversarial setting, it is easy to show that Theorem
9 in [2] extends to the p-stochastic assignment model by replacing ∆2(Y) with p|E| therein.2

The resulting optimality factor is of order
�
1−α
α

� 3
2
�

|V |, where α ∈ (0, 1] is the fraction of
queried edges out of the total number of edges. A quick comparison to Theorem 4 reveals
that treeletStar achieves a sharper mistake bound for any value of α. For instance, in
order to obtain an optimality factor which is lower than

�
|V |, cccc has to query in the

worst case a fraction of edges that goes to one as |V | → ∞. On top of this, our algorithms
are faster and easier to implement —see Section 3.1.

Next, we compare to query sets produced by low-stretch spanning trees. A low-stretch
spanning tree achieves a polylogarithmic optimality factor by querying |V |− 1 edge labels.
The results in [4] show that we cannot hope to get a better optimality factor using a single
low-stretch spanning tree combined by the analysis in (1). For a comparable amount Θ(|V |)
of queried labels, Theorem 4 offers the larger optimality factor |V |1/3. However, we can get
a constant optimality factor by increasing the query set size to O(|V |3/2). It is not clear
how multiple low-stretch trees could be combined to get a similar scaling.

3.1 Complexity analysis and implementation

We now compute bounds on time and space requirements for our three algorithms. Recall
the different lower bound conditions on the graph density that must hold to ensure that the

query set size is not larger than the test set size. These were |E| ≥ 2|V |− 2+ |V |2
k2 + |V |

k for

treeCutter(k) in Theorem 2, |E| ≥ 2|V |− 2+ 2|V |
3
2 for starMaker in Theorem 3, and

|E| ≥ 2|V |− 2 + 2
�

|V |−1
k + 1

� 3
2
for treeletStar(k) in Theorem 4.

2 This theoretical comparison is admittedly unfair, as cccc has been designed to work in a
harder setting than p-stochastic. Unfortunately, we are not aware of any other general active
learning scheme for link classification to compare with.

6

Theorem 5. For any input graph G = (V,E) which is dense enough to ensure that the
query set size is no larger than the test set size, the total time needed for predicting all test
labels is:

O(|E|) for treeCutter(k) and for all k

O
�
|E|+ |V | log |V |

�
for starMaker

O

�
|E|+

|V |

k
log

|V |

k

�
for treeletStar(k) and for all k.

In particular, whenever k|E| = Ω(|V | log |V |) we have that treeletStar(k) works in con-
stant amortized time. For all three algorithms, the space required is always linear in the
input graph size |E|.

4 Experiments

In this preliminary set of experiments we only tested the predictive performance of
treeCutter(|V |). This corresponds to querying only the edges of the initial spanning
tree T and predicting all remaining edges (i, j) via the parity of PathT (i, j). The spanning
tree T used by treeCutter is a shortest-path spanning tree generated by a breadth-first
visit of the graph (assuming all edges have unit length). As the choice of the starting node
in the visit is arbitrary, we picked the highest degree node in the graph. Finally, we run
through the adiacency list of each node in random order, which we empirically observed to
improve performance.

Our baseline is the heuristic ASymExp from [11] which, among the many spectral heuristics
proposed there, turned out to perform best on all our datasets. With integer parameter
z, ASymExp(z) predicts using a spectral transformation of the training sign matrix Ytrain,
whose only non-zero entries are the signs of the training edges. The label of edge (i, j) is
predicted using

�
exp(Ytrain(z))

�
i,j
. Here exp

�
Ytrain(z)

�
= Uz exp(Dz)U�

z , where UzDzU�
z is

the spectral decomposition of Ytrain containing only the z largest eigenvalues and their corre-
sponding eigenvectors. Following [11], we ran ASymExp(z) with the values z = 1, 5, 10, 15.
This heuristic uses the two-clustering bias as follows : expand exp(Ytrain) in a series of
powers Y n

train. Then each
�
Y n
train)i,j is a sum of values of paths of length n between i and

j. Each path has value 0 if it contains at least one test edge, otherwise its value equals the
product of queried labels on the path edges. Hence, the sign of exp(Ytrain) is the sign of a
linear combination of path values, each corresponding to a prediction consistent with the
two-clustering bias —compare this to the multiplicative rule used by treeCutter. Note
that ASymExp and the other spectral heuristics from [11] have all running times of order
Ω
�
|V |2

�
.

We performed a first set of experiments on synthetic signed graphs created from a subset
of the USPS digit recognition dataset. We randomly selected 500 examples labeled “1” and
500 examples labeled “7” (these two classes are not straightforward to tell apart). Then,
we created a graph using a k-NN rule with k = 100. The edges were labeled as follows:
all edges incident to nodes with the same USPS label were labeled +1; all edges incident
to nodes with different USPS labels were labeled −1. Finally, we randomly pruned the
positive edges so to achieve an unbalance of about 20% between the two classes.3 Starting
from this edge label assignment, which is consistent with the two-clustering associated with
the USPS labels, we generated a p-stochastic label assignment by flipping the labels of a
random subset of the edges. Specifically, we used the three following synthetic datasets:

DELTA0: No flippings (p = 0), 1,000 nodes and 9,138 edges;

DELTA100: 100 randomly chosen labels of DELTA0 are flipped;

DELTA250: 250 randomly chosen labels of DELTA0 are flipped.

We also used three real-world datasets:

MOVIELENS: A signed graph we created using Movielens ratings.4 We first normalized
the ratings by subtracting from each user rating the average rating of that user. Then,
we created a user-user matrix of cosine distance similarities. This matrix was sparsified by

3 This is similar to the class unbalance of real-world signed networks —see below.
4 www.grouplens.org/system/files/ml-1m.zip.

7

 0.4

 0.6

 0.8

 1

 10 20 30 40 50

F
-M

E
A

S
U

R
E

 (
%

)

TRAINING SET SIZE (%)

DELTA0

ASymExp z=1
ASymExp z=5

ASymExp z=10
ASymExp z=15

TreeCutter

 0.4

 0.6

 0.8

 1

 10 20 30 40 50

F
-M

E
A

S
U

R
E

 (
%

)

TRAINING SET SIZE (%)

DELTA100

ASymExp z=1
ASymExp z=5

ASymExp z=10
ASymExp z=15

TreeCutter

 0.4

 0.6

 0.8

 1

 10 20 30 40 50

F
-M

E
A

S
U

R
E

 (
%

)

TRAINING SET SIZE (%)

DELTA250

ASymExp z=1
ASymExp z=5

ASymExp z=10
ASymExp z=15

TreeCutter

 0.2

 0.4

 0.6

 1 2 3 4 5 6 7 8 9 10

F
-M

E
A

S
U

R
E

 (
%

)

TRAINING SET SIZE (%)

MOVIELENS

ASymExp z=1
ASymExp z=5

ASymExp z=10
ASymExp z=15

TreeCutter

 0.2

 0.4

 0.6

 10 20 30 40 50
F

-M
E

A
S

U
R

E
 (

%
)

TRAINING SET SIZE (%)

SLASHDOT

ASymExp z=1
ASymExp z=5

ASymExp z=10
ASymExp z=15

TreeCutter

 0.2

 0.4

 0.6

 0.8

 10 20 30 40 50

F
-M

E
A

S
U

R
E

 (
%

)

TRAINING SET SIZE (%)

EPINIONS

ASymExp z=1
ASymExp z=5

ASymExp z=10
ASymExp z=15

TreeCutter

Figure 3: F-measure against training set size for treeCutter(|V |) and ASymExp(z) with different values of z
on both synthetic and real-world datasets. By construction, treeCutter never makes a mistake when the labeling
is consistent with a two-clustering. So on DELTA0 treeCutter does not make mistakes whenever the training set
contains at least one spanning tree. With the exception of EPINIONS, treeCutter outperforms ASymExp using
a much smaller training set. We conjecture that ASymExp responds to the bias not as well as treeCutter, which
on the other hand is less robust than ASymExp to bias violations (supposedly, the labeling of EPINIONS).

zeroing each entry smaller than 0.1 and removing all self-loops. Finally, we took the sign
of each non-zero entry. The resulting graph has 6,040 nodes and 824,818 edges (12.6% of
which are negative).

SLASHDOT: The biggest strongly connected component of a snapshot of the Slashdot
social network,5 similar to the one used in [11]. This graph has 26,996 nodes and 290,509
edges (24.7% of which are negative).

EPINIONS: The biggest strongly connected component of a snapshot of the Epinions
signed network,6 similar to the one used in [13, 12]. This graph has 41,441 nodes and
565,900 edges (26.2% of which are negative).

Slashdot and Epinions are originally directed graphs. We removed the reciprocal edges with
mismatching labels (which turned out to be only a few), and considered the remaining edges
as undirected.

The following table summarizes the key statistics of each dataset: Neg. is the fraction of
negative edges, |V |/|E| is the fraction of edges queried by treeCutter(|V |), and Avgdeg
is the average degree of the nodes of the network.

Dataset |V | |E| Neg. |V |/|E| Avgdeg
DELTA0 1000 9138 21.9% 10.9% 18.2
DELTA100 1000 9138 22.7% 10.9% 18.2
DELTA250 1000 9138 23.5% 10.9% 18.2
SLASHDOT 26996 290509 24.7% 9.2% 21.6
EPINIONS 41441 565900 26.2% 7.3% 27.4
MOVIELENS 6040 824818 12.6% 0.7% 273.2

Our results are summarized in Figure 3, where we plot F-measure (preferable to accuracy
due to the class unbalance) against the fraction of training (or query) set size. On all
datasets, but MOVIELENS, the training set size for ASymExp ranges across the values 5%,
10%, 25%, and 50%. Since MOVIELENS has a higher density, we decided to reduce those
fractions to 1%, 3%, 5% and 10%. treeCutter(|V |) uses a single spanning tree, and thus
we only have a single query set size value. All results are averaged over ten runs of the
algorithms. The randomness in ASymExp is due to the random draw of the training set.
The randomness in treeCutter(|V |) is caused by the randomized breadth-first visit.

5 snap.stanford.edu/data/soc-sign-Slashdot081106.html.
6 snap.stanford.edu/data/soc-sign-epinions.html.

8

References

[1] Cartwright, D. and Harary, F. Structure balance: A generalization of Heider’s theory.
Psychological review, 63(5):277–293, 1956.

[2] Cesa-Bianchi, N., Gentile, C., Vitale, F., Zappella, G. A correlation clustering approach
to link classification in signed networks. In Proceedings of the 25th conference on
learning theory (COLT 2012). To appear, 2012.

[3] Chiang, K., Natarajan, N., Tewari, A., and Dhillon, I. Exploiting longer cycles for
link prediction in signed networks. In Proceedings of the 20th ACM Conference on
Information and Knowledge Management (CIKM). ACM, 2011.

[4] Elkin, M., Emek, Y., Spielman, D.A., and Teng, S.-H. Lower-stretch spanning trees.
SIAM Journal on Computing, 38(2):608–628, 2010.

[5] Facchetti, G., Iacono, G., and Altafini, C. Computing global structural balance in
large-scale signed social networks. PNAS, 2011.

[6] Giotis, I. and Guruswami, V. Correlation clustering with a fixed number of clusters. In
Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 1167–1176. ACM, 2006.

[7] Guha, R., Kumar, R., Raghavan, P., and Tomkins, A. Propagation of trust and distrust.
In Proceedings of the 13th international conference on World Wide Web, pp. 403–412.
ACM, 2004.

[8] Harary, F. On the notion of balance of a signed graph. Michigan Mathematical Journal,
2(2):143–146, 1953.

[9] Heider, F. Attitude and cognitive organization. J. Psychol, 21:107–122, 1946.

[10] Hou, Y.P. Bounds for the least Laplacian eigenvalue of a signed graph. Acta Mathe-
matica Sinica, 21(4):955–960, 2005.

[11] Kunegis, J., Lommatzsch, A., and Bauckhage, C. The Slashdot Zoo: Mining a social
network with negative edges. In Proceedings of the 18th International Conference on
World Wide Web, pp. 741–750. ACM, 2009.

[12] Leskovec, J., Huttenlocher, D., and Kleinberg, J. Trust-aware bootstrapping of recom-
mender systems. In Proceedings of ECAI 2006 Workshop on Recommender Systems,
pp. 29–33. ECAI, 2006.

[13] Leskovec, J., Huttenlocher, D., and Kleinberg, J. Signed networks in social media.
In Proceedings of the 28th International Conference on Human Factors in Computing
Systems, pp. 1361–1370. ACM, 2010.

[14] Leskovec, J., Huttenlocher, D., and Kleinberg, J. Predicting positive and negative links
in online social networks. In Proceedings of the 19th International Conference on World
Wide Web, pp. 641–650. ACM, 2010.

[15] Von Luxburg, U. A tutorial on spectral clustering. Statistics and Computing, 17(4):
395–416, 2007.

5 Appendix with missing proofs

Proof of Theorem 2. By Fact 2, it suffices to show that the length of each path used for
predicting the test edges is bounded by 4k + 1. For each T � ∈ T , we have DT � ≤ 2k, since
the height of each subree is not bigger than k. Hence, any test edge incident to vertices
of the same subtree T � ∈ T is predicted (Line 5 in Figure 1) using a path whose length is
bounded by 2k < 4k+1. Any test edge (u, v) incident to vertices belonging to two different
subtrees T �, T �� ∈ T is predicted (Line 11 in Figure 1) using a path whose length is bounded

9

by DT � + DT �� + 1 ≤ 2k + 2k + 1 = 4k + 1, where the extra +1 is due to the query edge
(i�, i��) connecting T � to T �� (Line 9 in Figure 1).

In order to prove that |V |− 1 + |V |2
2k2 + |V |

2k is an upper bound on the query set size, observe
that each query edge either belongs to T or connects a pair of distinct subtrees contained
in T . The number of edges in T is |V |− 1, and the number of the remaining query edges is
bounded by the number of distinct pairs of subtrees contained in |T |, which can be calculated
as follows. First of all, note that only the last subtree returned by extractTreelet may
have a height smaller than k, all the others must have height k. Note also that each subtree
of height k must contain at least k + 1 vertices of VT , while the subtree of T having height
smaller than k (if present) must contain at least one vertex. Hence, the number of distinct
pairs of subtrees contained in T can be upper bounded by

|T |(|T |− 1)

2
≤

1

2

�
|V |− 1

k + 1
+ 1

��
|V |− 1

k + 1

�
≤

|V |2

k2
+

|V |

k
.

This shows that the query set size cannot be larger than |V |− 1 + |V |2
2k2 + |V |

2k .

Finally, observe that DT ≤ 2DG because of the breadth-first visit generating T . If DT ≤ k,
the subroutine extractTreelet is invoked only once, and the algorithm does not ask for
any additional label of EG \ET (the query set size equals |V |−1). In this case EM is clearly
upper bounded by 2DG p|E|.

Proof of Theorem 3. In order to prove the claimed mistake bound, it suffices to show that
each test edge is predicted with a path whose length is at most 5. This is easily seen by the
fact that summing the diameter of two stars plus the query edge (i�, i��) that connects them
is equal to 2 + 2 + 1 = 5, which is therefore the diameter of the tree made up by two stars
connected by the additional query edge.

We continue by bounding from the above the query set size. Let Sj be the j-th star returned
by the j-th call to extractStar. The overall number of query edges can be bounded by
|V |− 1+ z, where |V |− 1 serves as an upper bound on the number of edges forming all the
stars output by extractStar, and z is the sum over j = 1, 2, . . . of the number of stars
Sj� with j� > j (i.e., j� is created later than j) connected to Sj by at least one edge.

Now, for any given j, the number of stars Sj� with j� > j connected to Sj by at least one
edge cannot be larger that min{|V |, |VSj |

2}. To see this, note that if there were a leaf q
of Sj connected to more than |VSj | − 1 vertices not previously included in any star, then
extractStar would have returned a star centered in q instead. The repeated execution of
extractStar can indeed be seen as partitioning V . Let P be the set of all partitions of
V . With this notation in hand, we can bound z as follows:

z ≤ max
P∈P

|P |�

j=1

min
�
z2j (P), |V |

�
(2)

where zj(P) is the number of nodes contained in the the j-th element of the partition P ,

corresponding to the number of nodes in Sj . Since
�|P |

j=1 zj(P) = |V | for any P ∈ P, it is easy

to see that the partition P ∗ maximizing the above expression is such that zj(P ∗) =
�

|V | for

all j, implying |P ∗| =
�
|V |. We conclude that the query set size is bounded by |V |−1+|V |

3
2 ,

as claimed.

Proof of Theorem 4. If the height of T is not larger than k, then extractTreelet is
invoked only once and T contains the single tree T . The statement then trivially follows
from the fact that the length of the longest path in T cannot be larger than twice the
diameter of G. Observe that in this case |VG� | = 1.

We continue with the case when the height of T is larger than k. We have that the length
of each path used in the prediction phase is bounded by 1 plus the sum of the diameters of
two trees of T . Since these two trees are not higher than k, the mistake bound follows from
Fact 2.

10

Finally, we combine the upper bound on the query set size in the statement of Theorem 3
with the fact that each vertex of VG� corresponds to a tree of T containing at least k + 1
vertices of G. This implies |VG� | ≤

|V |
k+1 , and the claim on the query set size of treeletStar

follows.

Proof of Theorem 5. A common tool shared by all three implementations is a preprocessing
step.

Given a subtree T � of the input graph G we preliminarily perform a visit of all its vertices
(e.g., a depth-first visit) tagging each node by a binary label yi as follows. We start off from
an arbitrary node i ∈ VT � , and tag it yi = +1. Then, each adjacent vertex j in T � is tagged
by yj = yi · Yi,j . The key observation is that, after all nodes in T � have been labeled this
way, for any pair of vertices u, v ∈ VT � we have πT �(i, j) = yi · yj , i.e., we can easily compute
the parity of PathT �(u, v) in constant time. The total time taken for labeling all vertices in
VT � is therefore O(|VT � |).

With the above fast tagging tool in hand, we are ready to sketch the implementation details
of the three algorithms.

Part 1. We draw the spanning tree T of G and tag as described above all its vertices in
time O(|V |). We can execute the first 6 lines of the pseudocode in Figure 5 in time O(|E|)
as follows. For each subtree Ti ⊂ T rooted at i returned by extractTreelet, we assign
to each of its nodes a pointer to its root i. This way, given any pair of vertices, we can
now determine whether they belong to same subtree in constant time. We also mark node
i and all the leaves of each subtree. This operation is useful when visiting each subtree
starting from its root. Then the set T contains just the roots of all the subtree returned by
extractTreelet. This takes O(|VT |) time. For each T � ∈ T we also mark each edge in
ET � so as to determine in constant time whether or not it is part of T �. We visit the nodes
of each subtree T � whose root is in T , and for any edge (i, j) connecting two vertices of T �,
we predict in constant time Yi,j by yi · yj . It is then easy to see that the total time it takes
to compute these predictions on all subtrees returned by extractTreelet is O(|E|).

To finish up the rest, we allocate a vector v of |V | records, each record vi storing only one
edge in EG and its label. For each vertex r ∈ T we repeat the following steps. We visit
the subtree T � rooted at r. For brevity, denote by root(i) the root of the subtree which
i belongs to. For any edge connecting the currently visited node i to a node j �∈ VT � , we
perform the following operations: if vroot(j) is empty, we query the label Yi,j and insert edge
(i, j) together with Yi,j in vroot(j). If instead vroot(j) is not empty, we set (i, j) to be part of
the test set and predict its label as

Ŷi,j ← πT (i, z
�) · Yz�,z�� · πT (z

��, j) = yi · yz� · Yz�,z�� · yz�� · yj ,

where (z�, z��) is the edge contained in vroot(j). We mark each predicted edge so as to avoid
to predict its label twice. We finally dispose the content of vector v.

The execution of all these operations takes time overall linear in |E|, thereby concluding the
proof of Part 1.

Part 2. We rely on the notation just introduced. We exploit an additional data structure,
which takes extra O(|V |) space. This is a heap H whose records hi contain references to
vertices i ∈ V . Furthermore, we also create a link connecting i to record hi. The priority
key ruling heap H is the degree of each vertex referred to by its records. With this data
structure in hand, we are able to find the vertex having the highest degree (i.e., the top
element of the heap) in constant time. The heap also allows us to execute in logarithmic
time a pop operation, which eliminates the top element from the heap.

In order to mimic the execution of the algorithm, we perform the following operations. We
create a star S centered at the vertex referred to by the top element of H connecting it with
all the adjacent vertices in G. We mark as “not-in-use” each leaf of S. Finally, we eliminate
the element pointing to the center of S from H (via a pop operation) and create a pointer
from each leaf of S to its central vertex. We keep creating such star graphs until H becomes
empty. Compared to the creation of the first star, all subsequent stars essentially require

11

the same sequence of operations. The only difference with the former is that when the top
element of H is marked as not-in-use, we simply pop it away. This is because any new star
that we create is centered at a node that is not part of any previously generated star. The
time it takes to perform the above operations is O(|V | log |V |).

Once we have created all the stars, we predict all the test edges the very same way as we
described for treeCutter (labeling the vertices of each star, using a set T containing all
the star centers and the vector v for computing the predictions). Since for each edge we
perform only a constant number of operations, the proof of Part 2 is concluded.

Part 3. treeletStar(k) can be implemented by combining the implementation of tree-
Cutter with the implementation of starMaker. In a first phase, the algorithm works
as treeCutter, creating a set T containing the roots of all the subtrees with diameter
bounded by k. We label all the vertices of each subtree and create a pointer from each node
i to root(i). Then, we visit all these subtrees and create a graph G� = (V �, E�) having the
following properties: V � coincides with T , and there exists an edge (i, j) ∈ E� if and only
if there exists at least one edge connecting the subtree rooted at i to the subtree rooted at
j. We also use two vectors u and u�, both having |V | components, mapping each vertex
in V to a vertex in V �, and viceversa. Using H on G�, the algorithm splits the whole set
of subtrees into stars of subtrees. The root of the subtree which is the center of each star
is stored in a set S ⊆ T . In addition to these operations, we create a pointer from each
vertex of S to r. For each r ∈ S, the algorithm predicts the labels of all edges connecting
pairs of vertices belonging to S using a vector v as for treeCutter. Then, it performs a
visit of S for the purpose of relabeling all its vertices according to the query set edges that
connect the subtree in the center of S with all its other subtrees. Finally, for each vertex of
S, we use vector v as in treeCutter and starMaker for selecting the query set edges
connecting the stars of subtrees so created and for predicting all the remaining test edges.

Now, G� is a graph that can be created in O(|E|) time. The time it takes for operating

with H on G� is O(|V �| log |V �|) = O

�
|V |
k log |V |

k

�
, the equality deriving from the fact that

each subtree with diameter equal to k contains at least k + 1 vertices, thereby making
|V �| ≤ |V |

k . Since the remaining operations need constant time per edge in E, this concludes
the proof.

12

	Introduction
	Preliminaries and notation
	Algorithms and their analysis
	Complexity analysis and implementation

	Experiments
	Appendix with missing proofs

