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Abstract. A data structure, named a navigation pile, is described and exploited in the im-
plementation of a sorting algorithm, a priority queue, and a priority deque. When carrying
out these tasks, a linear number of bits is used in addition to the elements manipulated, and
extra space for a sublinear number of elements is allocated if the grow and shrink opera-
tions are to be supported. Our viewpoint is to allow little extra space, make a low number
of element moves, and still keep the efficiency in the number of element comparisons and
machine instructions. In spite of low memory consumption, the worst-case bounds for the
number of element comparisons, element moves, and machine instructions are close to the
absolute minimum.

ACM CCS Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and
Problem Complexity]: Nonnumerical Algorithms and Problems – sorting and search-
ing; E.1 [Data Structures] – lists, stacks, and queues; E.2 [Data Storage Representations]
– linked representations; D.3.2 [Programming Languages]: Language Classifications –
object-oriented languages
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1. Introduction

This work is part of the CPH STL project, where the goal is to develop an enhanced
edition of the Standard Template Library (STL). For more information about the
project, see the CPH STL website [6].
The STL, which is an integrated part of the ISO standard for the C++ program-

ming language [12], supports many basic data processing tasks related to sorting
and searching. We describe an efficient data structure, called a navigation pile,
which can be used for the realization of the sort function, the priority-queue class,
and the priority-deque class, the last being a CPH STL extension of the STL. In
this paper the theoretical justification of the methods proposed is given.
Our work was motivated by the experiments carried out in our project group by

Jensen [13]. His results were as follows:
(1) A priority queue relying on extensive pointer manipulation is doomed to fail

due to the high number of cache misses.
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(2) Instead of binary heaps it is better to use d-ary heaps (for small values of
d) since for them the memory references are more local. This confirmed the
results reported earlier by LaMarca and Ladner [17, 18].

(3) A priority queue relying on merging turned out to be slow when elements are
large due to the high number of element moves.

When large elements are manipulated in internal memory, the most important per-
formance indicators are the number of element comparisons and that of element
moves. Therefore, we try to keep these numbers close to the absolute minimum.
We still rely on (implicit) pointer manipulation, but by packing the navigation in-
formation compactly we hope that this part of the data structure is kept close to the
central processing unit at all times.
As a data structure, a navigation pile is elegant and its manipulation algorithms

are conceptually simple. Therefore, we feel that this structure should be presented
in any modern textbook on algorithms and data structures as an addition to heaps.
The model of computation used is the word RAM as defined in [11]. We assume

the availability of the following instructions: comparison, addition, multiplication,
left shift, right shift, bitwise and, bitwise or, bitwise not, memory allocation, and
memory deallocation functions as defined in C++. We let w denote the length of
each machine word measured in bits. By an element move we mean the execution
of a copying operation, a copy construction, or a copy assignment; provided for
the elements being manipulated. An element comparison means the evaluation of
an ordering function which returns true or false, and which defines a strict weak
ordering on the set of elements. For a formal definition of a strict weak ordering,
see, for example, [12, §25.3]. An instruction means any allowable word operation.
Observe that the instructions executed inside the element constructor, the element
destructor, the element assignment, and the ordering function are not included in
our instruction counts.
For integers i and k, i ≤ k, we use [i . . k) to denote the sequence of integers
〈i, i+1, . . . , k−1〉, and A[i . . k) the sequence of elements 〈A[i], A[i+1], . . . , A[k−1]〉.
In the C++ standard library, it is customary to represent a sequence using a pair of
iterators which indicate the position of the first element and that of the one-past-
the-end element, respectively. An iterator object is assumed to provide operations
so that all the elements in the sequence can be reached from the given positions.
We bypass these low-level details and see a sequence as a single object.
Due to the variations in the terminology in the literature we briefly recall the

concepts related to trees relevant for us. A node of a tree is the root if it has no
parent, a leaf if it has no children, and a branch if it has at least one child. The
depth of a node is the length of the path from that node to the root, the root having
depth 0. The height of a node is the length of the longest path from that node to
a leaf. Let d ≥ 2 be an integer. In a complete d-ary tree all its branches have
d children, and all its leaves have the same depth. A left-complete d-ary tree is
obtained from a complete d-ary tree by removing some of its rightmost leaves.
A d-ary heap with respect to an ordering function less() is a data structure having

the following properties:

Shape: It is a left-complete d-ary tree.
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Load: Each node of this tree stores one element of a given type.

Order: For each branch of the tree, the element y stored at that node is no smaller
than the element x stored at any child of that node, i.e. less(y, x) must return
false.

Representation: The tree is represented in a sequence by storing the elements in
breadth-first order.

Informally, such a data structure is often called a d-ary max-heap. The binary heaps
were invented by Williams [25] and the generalization to d > 2 was suggested by
Johnson [14].
A priority queue with respect to an ordering function less() is a data structure

storing a set of elements and supporting the following operations:

priority queue(const input sequence& X, const ordering& f ,
const container sequence& Y);

Effect: Construct a priority queue containing the elements stored in the sequence
referred to by X using the function referred to by f as the ordering function
and a copy of the sequence referred to by Y as the underlying container for
the elements. In particular, note that the elements are to be copied from the
input sequence to a separate container sequence.

const element& top() const;

Effect: Return a reference to an element whose priority is highest among the ele-
ments stored in the priority queue. We call such an element the top element,
i.e. for that element y and for every other element x in the priority queue,
less(y, x) must return false.

void push(const element& x);

Effect: Insert a copy of the element referred to by x into the priority queue.

void pop();

Requirement: The priority queue should not be empty.

Effect: Erase the top element from the priority queue.

According to the C++ standard [12, §23.2.3], other operations (like size()) should
be supported as well, but normally these are trivial to implement.
A priority deque (double-ended queue) is similar, but in addition we have the

member function:

const element& bottom() const;
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Effect: Return a reference to an element whose priority is lowest among the el-
ements stored in the priority deque. We call such an element the bottom
element.

And instead of the pop() function we have the member functions:

void pop top();

Requirement: The priority deque should not be empty.

Effect: Erase the top element from the priority deque.

void pop bottom();

Requirement: The priority deque should not be empty.

Effect: Erase the bottom element from the priority deque.

In [15] a data structure having the same shape, load, and representation properties
as a heap was used in the realization of resizable arrays. To distinguish the data
structure from the heap it was called a pile. The data structure proposed by us
is a modification of a pile, where the branches store navigation information and
the leaves store the elements. Therefore, we call the data structure a navigation
pile. One could also see the navigation pile as an extension of the selection tree
discussed, for example, in [16].
Let N be a fixed power of 2. A navigation pile is a priority queue that can store

at most N elements. Let n denote the number of elements in the data structure. The
basic features of a navigation pile can be listed as follows:
(1) The data structure requires 2N bits in addition to the elements stored. Using

standard packing techniques, it is possible to pack the extra bits into &2N/w'
words.

(2) The construction of the data structure requires n−1 element comparisons, n
element moves, and O(n) instructions.

(3) The top() function takes O(1) instructions.
(4) If the data structure is not full and it is possible to execute the push() function,

its execution requires at most log2 log2 n+O(1) element comparisons, one
element move, and O(log2 n) instructions.

(5) The pop() function requires at most
⌈

log2 n
⌉

element comparisons, two ele-
ment moves, and O(log2 n) instructions.

The data structure is described and analysed in Section 2, and it is made dynamic
in Section 4 with not much loss in efficiency.
A navigation pile can be immediately used for sorting. The resulting sorting algo-

rithm, called pilesort, sorts a sequence of n elements using at most 4n+O(w) extra
bits of memory, n log2 n+ 0.59n+O(1) element comparisons, 2.5n +O(1) element
moves, and O(n log2 n) instructions. Recall that the information-theoretic lower
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bound for the number of element comparisons is n log2 −n log2 e + (1/2) log2 n +
Θ(1) [16, §5.3.1] and the optimum for the number of element moves n − T + C,
where T andC denote the number of trivial and nontrivial cycles in the permutation
of elements being sorted [19]. Pilesort is described and analysed in Section 3.
In Section 5 we show how navigation piles can be employed in the implementa-

tion of priority deques. In Section 6 we consider some generalizations of naviga-
tion piles. In Section 7 the results proved are summarized (see Table I) and some
open problems are posed.
Before going into the details we give a brief survey of some related work. A data

structure similar to our navigation pile has earlier been described by Pagter and
Rauhe [20], and used for sorting. The usage in connection with a priority queue
and a priority deque seems to be new. As compared to their structure we use more
bits to save a significant number of element comparisons. Moreover, they allowed
holes in their structure, whereas we maintain the elements compactly as done in
heaps. This makes the dynamization of the structure easy. Also, the fine-heap of
Carlsson et al. [4] uses similar ideas as our navigation pile.
Traditional implementations of a priority queue, like that provided in the Silicon

Graphics Inc. implementation of the STL [22], are based on a binary heap, which
is an in-place data structure requiring only O(1) extra words of memory. As a
navigation pile, a binary heap is static in a sense that the maximum number of
elements to be stored must be known beforehand. Using the techniques described,
for example, in [15] — also used by us — the structure can be dynamized space-
efficiently and bounds similar to ours are obtained, except that in the worst case
the push() and pop() functions require a logarithmic number of element moves. It
is well-known that the efficiency of binary heaps can be improved by storing extra
bits at the nodes (see, for example, [4, 8, 24]). Similarly, for small values of d, the
efficiency of d-ary heaps can be improved in a space-efficient manner to use the
same number of element comparisons as improved binary heaps, but for the push()
and pop() functions the number of element moves performed in the worst case gets
reduced to logd n+O(1).
As to sorting, there are variants of heapsort (see, e.g. [4, 8, 24]) that use n ex-

tra bits and require n log2 n−Ω(n) or n log2 n+O(n) element comparisons, but the
number of element moves can be as high as that of element comparisons. Indepen-
dently of our work, Franceschini and Geffert [9] have devised an in-place sorting
algorithm that performs 2n log2 n+o(n log2 n) element comparisons and less than
13n+εn element moves, where ε is arbitrarily small, but fixed, real number greater
than zero. Moreover, there exists an in-place sorting algorithm [19] which performs
the optimum number of element moves, but then the amount of other operations
gets high.
Three static in-place priority-deque structures have been proposed in the litera-

ture: min-max heaps [1], deaps [3] (see also [5]), and interval heaps [23]. All these
structures can be made dynamic using the techniques described in [15], after which
the efficiency of the functions push(), pop top(), and pop bottom() would be about
the same as for our structure, except that in the worst case the number of element
moves is logarithmic, whereas we need only a constant number of element moves
per operation.
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2. Navigation piles

Let N be a fixed power of 2, i.e. N = 2η for some nonnegative integer η. A
navigation pile is a priority queue having the following properties:

Shape: It is a complete binary tree of size 2η+1−1.

Leaves: If there are n elements, n ≤ 2η, the first n leaves store one element each
and the remaining leaves are empty.

Branches: We say that the leaves in the subtree rooted by a branch form the leaf
sequence of that branch. Each branch, whose leaf sequence contains ele-
ments, stores the index of the leaf inside the leaf sequence containing the top
element among all the elements stored in the leaf sequence. As earlier the
top element is defined with respect to a given ordering function less().

Representation: Since the types of data stored at the leaves and branches are dif-
ferent, the data structure consists of two sequences: A[0 . . n) storing the ele-
ments and B[0 . . 2η+1) storing the navigation information.

The data structure is illustrated in Fig. 1 for integer data using operator<() as the
ordering function.
We use pseudo C++ in the description of our algorithms. In particular, we omit all

low-level details related to bit manipulation and memory allocation. For the sake
of clarity, we divide the integers operated on into several overlapping categories:

a) •

•

•

• •

•

• •

•

•

• •

•

• •

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

3 44 37 15 16 18 8

branch indices

leaf indices

elements

element indices0 1 2 3 4 5 6

15 16 17 18 19 20 21

b)

|branch index | 0| 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14|
|offset (binary)|****|001|***|01|01|**|**| 1| 0| 1| 0| *| *| *| *|

Fig. 1: a) A navigation pile of size 7 and capacity 16. The normal parent/child relationships are
shown with dotted arrows and the references indicated by the offsets with solid arrows. The gray
nodes are not in use. b) The bit representation of the navigation information. Bits marked with * are
not in use.
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levels are nonnegative integers no larger than η, offsets are the indices stored at the
branches, branch indices are the indices of the branches of the complete binary
tree, leaf indices are the indices of the leaves of that tree, element indices are the
indices of the elements stored in A[0 . . n), and bit indices are the indices of the
bits stored in B[0 . . 2η+1). The branch and leaf indices are collectively called node
indices. For instance, the element stored at the leaf with leaf index i has the element
index i−2η+1 in sequence A[0 . . n).
Let us first verify that all the offsets can be actually stored in a sequence of 2η+1

bits. First, there are 2δ branches whose depth is δ, 0 ≤ δ < η. Second, the leaf
sequence of a branch whose height is γ stores at most 2γ elements. Hence, γ bits
are enough to represent the corresponding offset. Letting γ = η−δ, we get that the
total number of bits used for the offsets is

η−1
∑

δ=0
2δ(η−δ) < 2η+1 = 2N .

We want to store the offsets maintained in the branches as compactly as possible.
For this purpose, we assume that we have a class which stores the 2η+1 bits in
2η+1/w words and supports the operations:

offset get(bit index i, level γ) const;

Requirement: γ ≤ w.

Effect: Return the integer corresponding to the bit sequence B[i . . i+γ). We use
the shorthand notation λ← B[i . . i+γ) for this operation.

void set(bit index i, level γ, offset λ);

Requirement: γ ≤ w.

Effect: Update the contents of the bit sequence B[i . . i+γ) using the γ low-order
bits of λ. In brief, we denote this operation as B[i . . i+γ) ← λ.

The implementation of these functions is straightforward using O(1) left and right
shifts, and bitwise boolean instructions.
The navigation-pile class has several member functions which simplify the de-

scription of the other member functions. To make the bounds for the number of
element comparisons and machine instructions depend on n, not on N, any of the
nodes on the left arm of the complete binary tree can be the root. Below we give
the first collection of member functions.

level depth(node index i) const;

Effect: return
⌊

log2(1+i)
⌋

;

level height(node index i) const;
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Effect: return η−depth(i);

node index first child(node index i) const;

Effect: return 2i+1;

node index second child(node index i) const;

Effect: return 2i+2;

node index parent(node index i) const;

Effect: return )(i−1)/2*;

node index ancestor(node index i, level ∆) const;

Requirement: ∆ ≤ depth(i).

Effect: return
⌊

(i+1)/2∆−1
⌋

;

node index root() const;

Effect: level δ← η−
⌈

log2 n
⌉

;
return 2δ−1;

leaf index first leaf () const;

Effect: return 2η−1;

leaf index last leaf () const;

Effect: return 2η+n−2;

element index size() const;

Effect: return n;

bool is first child(node index i) const;

Effect: return (i bitand 1 = 1);

bool is root(node index i) const;

Effect: return (i = root());

bool is in use(node index i) const;

Effect: level γ← height(i);
leaf index start of leaf sequence ← 2γi+2γ−1;
return (γ ≤ ⌈log2 n

⌉ and start of leaf sequence ≤ last leaf ());
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bit index start of offset(branch index i) const;

Effect: level δ← depth(i);
level γ ← height(i);
branch index index at own level← i−2δ+1;
bit index bits upto this level ← (η+1)δ(δ+1)/2 − δ(δ+1)(2δ+1)/6;
bit index bits before ← bits upto this level+index at own level · γ;
return bits before;

leaf index element to leaf (element index &) const;

Effect: return first leaf ()+&;

element index leaf to element(leaf index L) const;

Effect: return L−first leaf ();

(element index, offset) jump to element(branch index i) const;

Effect: bit index s← start of offset(i);
level γ ← height(i);
offset λ← B[s . . s+γ);
leaf index start of leaf sequence ← 2γi+2γ−1;
element index &← leaf to element(start of leaf sequence+λ);
return (&, λ);

All these member functions are quite straightforward, except the function
start of offset(). It is supposed to calculate the number of bits used by the offsets
stored prior to the offset of the given branch, when the offsets of all branches are
stored in breath-first order. Let δ and γ be the depth and height of the given branch,
respectively. The desired number can be obtained by summing the number of bits
used by the offsets of the branches on the full levels above, which is

∑δ−1
β=0 2

β(η−β)
bits in total, and the number of bits used by the offsets stored at the nodes on the
same level, which is γ bits per branch. The formula used in the pseudo code is the
above sum in a closed form.
The correctness of these member functions follows directly from the properties

of navigation piles. Assuming that the whole-number logarithm function is also
in our repertoire of constant-time operations, all the functions clearly execute at
most O(1) instructions. At the end of this section we explain how to abandon the
constant-time logarithm function without increasing the resource bounds for the
public member functions: constructor, top(), push(), and pop().
Now we are ready to present the realization of the priority queue operations. We

start with the constructor. The basic idea is simple: visit the branches that are in use
in a bottom-up manner and for each branch update the offset using the information
available at its children. We follow the recommendation of Bojesen et al. [2] and
visit the nodes in depth-first order to improve the cache performance. Instead of
relying on recursion, our implementation is iterative.

navigation pile(const input sequence& X, element index capacity,
const ordering& f , const container sequence& Y);
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Effect: Allocate space for the sequence A[0 . . capacity) of the same type as the
sequence referred to by Y;
Copy the elements stored in the sequence referred to by X to A;
Construct a private copy of the ordering function referred to by f and call
it less();
Let 2η be the smallest power of 2 larger than or equal to capacity;
Allocate space for the bit sequence B[0 . . 2η+1);
Use n as a synonym for A.size();
if (n ≤ 1) return;
make pile();

The make pile() function and its utility functions are as follows.
void make pile();

Effect: branch index j← parent(first leaf ());
branch index & ← parent(last leaf ());
for (branch index k ← &; k ≥ j; --k)

handle height one branch(k);
branch index i← k;
while (is first child(i) and not is root(i))

i← parent(i);
handle upper branch(i);

void handle height one branch(branch index i);

Effect: bit index s← start of offset(i);
element index &← leaf to element(first child(i));
if (is in use(second child(i)))
element index m← leaf to element(second child(i));
B[s . . s+1) ← less(A[m], A[&]) ? 0 : 1;

else
B[s . . s+1) ← 0;

void handle upper branch(branch index i);

Effect: bit index s← start of offset(i);
level γ← height(i);
(element index &, offset λ)← jump to element(first child(i));
if (is in use(second child(i)))
(element index m, offset µ)← jump to element(second child(i));
B[s . . s+γ) ← less(A[m], A[&]) ? λ : 2γ−1+µ;

else
B[s . . s+γ) ← λ;

For each branch with both children in use one element comparison is performed.
The number of such branches is n−1, which gives us the number of element com-
parisons performed. At the beginning the elements are copied to the container



248 J. KATAJAINEN, F. VITALE

sequence, but thereafter the elements are not moved. That is, exactly n element
moves are performed. Most code is needed for performing transformations be-
tween different kinds of indices, but all these take only O(1) instructions. Since
each branch in use is visited once, the total number of instructions executed is
O(n).
The top() function is easily realized by following the offset stored at the root.

Clearly, only O(1) instructions are needed.

const element& top() const;

Effect: (element index &,·)← jump to element(root());
return A[&];

If n < N and the space originally allocated for the container sequence is not
exhausted, the push() function can be accomplished by appending the new element
at the end of sequence A[0 . . n) (we assume that this is done by the push back()
function), and updating the navigation information at the branches. A naive way
to do the updates is to visit the branches on the special path from the last leaf
to the root one by one starting from the bottom. In practice this method may be
sufficient, but in the worst case it requires

⌈

log2 n
⌉

element comparisons. As for
heaps (see, for example, [10]), binary search can be used to accelerate the location
of the branch whose offset refers to an element that is smaller than the new element
and whose height is the largest for such branches; if no such branch exists, the
last leaf is output. When the index of this branch is available, the offsets of the
branches on the special path up to this branch are updated to refer to the last leaf.
The implementation details are given below.

void push(const element& x);

Effect: A.push back(x);
node index i← binary search on special path(x);
update partial path(last leaf (), i, last leaf ());

node index binary search on special path(const element& x);

Effect: level ∆← height(root());
node index j← last leaf ();
while (∆ > 0)
level half ← )∆/2*;
branch index i← ancestor( j,∆−half );
(element index &, ·)← jump to element(i);
if (less(A[&], x))

j← i;
∆← half ;

else
∆← ∆−half −1;

return j;
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void update partial path(node index j, node index i, leaf index K);

Requirement: j is an ancestor of K and i is an ancestor of j.

Effect: level γ← height( j);
while ( j ! i)

j← parent( j);
γ← γ+1;
bit index s← start of offset( j);
leaf index start of leaf sequence ← 2γ j+2γ−1;
offset λ← K−start of leaf sequence;
B[s . . s+γ) ← λ;

In the push() function only binary search involves element comparisons. Since
the length of the path considered is

⌈

log2 n
⌉

,
⌈

log2(
⌈

log2 n
⌉

+1)
⌉

element compa-
risons are done. One element move is needed since the parameter for the function
is a const object. Clearly, the number of instructions executed is O(log2 n).
In a naive implementation of the pop() function the top element is overwritten by

the element taken from the last leaf, that element is erased (using the pop back()
function), and the navigation information is updated accordingly. In our imple-
mentation the top element can get destroyed in three different ways (see Fig. 2 on
page 251). Let i1 and i2 be the branch index of the first and the second ancestor
of the last leaf having two children. If prior to the function call n > 1, the branch
with index i1 exists, and if n−1 is not a power of 2, the branch index i2 exists. Let
m be the element index of the top element, & the element index of the last leaf, k
the element index referred to by the offset stored at the branch with index i2, j1 the
element index referred to by the offset stored at the first child of the branch with
index i1 (or j1 = &−1 if & is odd), and j2 the element index referred to by the offset
stored at the first child of branch with index i2.

Case 1: If m = &, the top element stored at the last leaf is erased, and the offsets
on the path from the new last leaf to the root are updated.

Case 2: a) If m ! & and k ! &, or b) if m ! & and & is a power of 2, the assignment
A[m] ← A[&] is performed, the element copied is erased, the offsets stored
at the branches on the path from i1 (including it) up to i2 (excluding it) are
updated to refer to the leaf corresponding to the position j1 (if they referred
earlier to the last leaf), and the offsets on the path from the leaf corresponding
to the position m up to the root are updated.

Case 3: If m ! & and k = &, the assignments A[m] ← A[ j2] and A[ j2] ← A[&]
are done, the element stored at the last leaf is erased, the offsets stored at the
branches on the path from i1 (including it) up to i2 (excluding it) are updated
to refer to the leaf corresponding to the position j1, the offsets on the path
from i2 (including it) upwards are updated to refer to the leaf corresponding
to the position j2 if they referred earlier to the last leaf, and the offsets on the
path from the leaf corresponding to the position m up to the root are updated.
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A more detailed description of the pop() function and its utility functions is given
below.

void pop();
Effect: if (n = 1)

A.pop back();
return;

(element index m, ·)← jump to element(root());
const element index & ← leaf to element(last leaf ());
(branch index i1, branch index i2)←

first two ancestors with more than one child(last leaf ());
(element index k, ·)← jump to element(i2);
element index j1;
if (height(i1) = 1)

j1 ← & − 1;
else
( j1, ·) ← jump to element(first child(i1));

if (m = &)
A.pop back();
update full path(last leaf ());

elseif (k ! &)
A[m]← A[&];
A.pop back();
update partial path(i1, i2, element to leaf ( j1), last leaf ());
update full path(element to leaf (m));

else
(element index j2, ·)← jump to element(first child(i2));
A[m]← A[ j2];
A[ j2]← A[&];
A.pop back();
update partial path(i1, i2, element to leaf ( j1), last leaf ());
update partial path(i2, root(), element to leaf ( j2), last leaf ());
update full path(element to leaf (m));

(branch index, branch index)
first two ancestors with more than one child(leaf index L) const;
Requirement: n > 1.

Effect: branch index i1 ← parent(L);
while (not is in use(second child(i1)))

i1 ← parent(i1);
if (is root(i1))
return (i1, i1);

branch index i2 ← parent(i1);
while (not is in use(second child(i2)))

i2 ← parent(i2);
return (i1, i2);
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void update full path(leaf index L);

Requirement: n > 1.

Effect: branch index i← parent(L);
handle height one branch(i);
while (not is root(i))

i← parent(i);
handle upper branch(i);

void update partial path(branch index j, branch index i, leaf index K,
leaf index L);

Requirement: i is an ancestor of j, K and L are in the leaf sequence of j.

Effect: while (i ! j)
bit index s← start of offset( j);
level γ← height( j);
offset κ← B[s . . s+γ);
leaf index start of leaf sequence ← 2γ j+2γ−1;
offset λ← L−start of leaf sequence;
if (κ ! λ) return;
offset µ← K−start of leaf sequence;
B[s . . s+γ) ← µ;
j← parent( j);

In each of the three cases only one path update involves element comparisons.
Since the depth of the root is

⌈

log2(n−1)
⌉

after the element removal and at most
one element comparison is done at each level, the number of element comparisons

•

•

•

• •

•

• •

•

•

• •

•

• •

i2

i1

3 44 37 15 16 18 8 2 15 12 1 3 4 22
m j2 j1 k|&

Fig. 2: Illustration of Case 3. The nodes whose contents may change are indicated in light gray.
When updating the contents of the shadowed branches on the right, no element comparisons are
necessary.
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performed is bounded by
⌈

log2(n−1)
⌉

. No move, one move, or two moves are
done depending on the case. The bound O(log2 n) for the number of instructions is
obvious.
The whole-number logarithm function has been used for two purposes: to com-

pute the height of the tree (in the functions root() and is in use()) and to compute
the depth or the height of a node (in the functions depth() and height()). The first
usage can be avoided by remembering the height and the index of the root. The
second usage can be avoided by forwarding the height of the node being manipu-
lated in one of the parameters to the member functions that use depth() or height().
When the height is known, the depth is obtained using η. To sum up, the whole-
number logarithm function can be avoided altogether.

3. Sorting

The sort() function has the following abstract interface:
void sort(sequence& X, const ordering& f );
The task is to reorder the elements stored in the sequence referred to by X such that
the ordering function referred to by f returns false for the reverse of all consecutive
pairs of elements.
A navigation pile can be used for sorting in the same way as a heap in heapsort

[25]. We make only two minor modifications to the functions described in the
previous section:
(1) In the construction of the data structure the copying of the elements to a sep-

arate sequence is not necessary, but the input sequence can be used for the
same purpose. To enable this a new constructor is provided which takes a
handle to a sequence, not a const sequence, as its first parameter. We assume
that such a construction transfers the ownership of the data to the navigation
pile. To get the sorted output back to the initial sequence, conversion func-
tion operator sequence() is provided which converts a navigation pile to a
sequence by discarding the navigation information. The manipulation of the
handles to these data structures is assumed to take O(1) instructions.

(2) In connection with the pop() function the top element is not overwritten but
saved at the earlier last leaf. (Actually, the C++ standard requires that the
pop heap() function, which is not discussed here, should just have this effect
[12, §25.3.6].) To accomplish this, no change, a swap, or a rotation of three
elements is performed depending on the case we are in. This new function is
called pop and save().

The basic version of pilesort, as it is called here, works as follows:

void pilesort(sequence& X, const ordering& f );

Effect: navigation pile P(X, X.size(), f );
while (P.size() > 1)

P.pop and save();
X ← P.operator sequence();
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When sorting n elements, the amount of extra space needed is at most 4n bits,
since 2&log2 n' < 2n. Otherwise, only a constant number of additional words is used.
During the construction n−1 element comparisons are performed. The consecu-
tive invocations of the pop and save() function incur at most

∑n
k=2
⌈

log2(k−1)
⌉

element comparisons. Since the sum
∑n
k=2
⌊

log2 k
⌋

is less than n log2 n− 1.91n
(see, for example, [24]), the total number of element comparisons is bounded by
n log2 n+0.09n+O(1). A swap requires three moves and a rotation of three elements
four moves, so the total number of element moves is never more than 4n. Since the
construction of the pile requires O(n) instructions, its deconstruction O(n) instruc-
tions, and each invocation of the pop and save() function O(log2 n) instructions,
the total number of instructions executed is O(n log2 n).
The number of element moves is actually at most 3.5n+O(1), which is seen as

follows. For every odd value of & = n−1, if we have to do three moves to erase the
last leaf meaning that the offset stored at the second ancestor (cf. the explanation in
connection with the pop() function) having two children refers to the last leaf, then
in the next iteration the first ancestor of the last leaf is the previous second ancestor
so it cannot refer to the last leaf, or & is a power of 2, and in both of these cases at
most two moves are necessary.
The number of element moves can be reduced to 2.5n+O(1) by finding the bot-

tom element, keeping a separate copy of it, and moving the element stored at the
last leaf to the place of the bottom element, which creates a hole at the end of the
sequence. In the pop and save() function a rotation of three elements can be re-
placed with three moves: the top element is moved to the hole, the middle element
to the place of the top element, and the last of the remaining elements to the place
of the middle element creating a new hole. Similarly, a swap can be replaced with
two moves. After all pop and save() operations the bottom element is moved to
the hole at the beginning of the sequence. Due to the search of the bottom ele-
ment the number of element comparisons is increased by n−1. This number could
even be reduced to )(n−1)/2* by finding the bottom element during the construc-
tion of the navigation pile. Just after the navigation information is available at the
branches of height one, the losers are used to find the bottom element and the ele-
ment stored at the last leaf is moved to its place, after which the construction of the
navigation pile is continued. That is, the number of element comparisons becomes
n log2 n+0.59n+O(1).

4. Priority queues

In Section 2 we assumed that the maximum number of elements to be stored in
the data structure is known beforehand. In this section we devise a fully dynamic
priority queue, which consists of a collection of navigation piles instead of only
one. Our construction relies heavily on the dynamization techniques developed by
Katajainen and Mortensen [15].
Let us first consider the dynamization of the container sequence storing the el-

ements. Any resizable array, which is a data structure supporting the grow and
shrink operations at the back end — i.e. the functions push back() and pop back()
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used in Section 2 — could be used for this purpose. To be sure that the number
of element moves stated in our resource bounds stay valid, we recommend that
one of the two resizable-array structures described in [15] is used. The first struc-
ture based on doubling allocates space for at most 4n elements (this can be easily
improved to 2n+O(1)) and O(log2 n) pointers if the sequence stores n elements.
The second space-efficient structure reserves never space for more than O(

√
n) ex-

tra elements and O(
√
n) pointers. It is significant, and this is true for both of these

structures, that the elements are not moved because of the dynamization after they
have been inserted into the structure.
For the dynamization of the bit sequence we cannot use the space-efficient resiz-

able arrays, but the alternative relying on doubling is still applicable. We divide
the element sequence into blocks B∗ and Bh of size 25 and 2h for h = 5, 6, . . .,
respectively, until all the elements can be stored. The space for block B∗ and the
corresponding bit sequence is statically allocated to avoid repeated memory allo-
cations and deallocations for small blocks. We allow the largest block to be empty
for a while to deamortize the costs of memory allocations and deallocations done
in the proximity of block boundaries. If there is an empty block and the largest
nonempty block lacks more than 25 elements, the bit sequence allocated for the
largest block is freed. The size of the bit sequence for each block is fixed, so for
each of them the techniques discussed in Section 2 can be used.
The data structure is illustrated in Fig. 3. There are four types of headers: the bit

header stores the pointers to the bit sequences, the segment header stores the start
addresses of the arrays storing pointers to the memory segments allocated for the
elements, the iterator header stores iterators to the top elements of the respective
blocks, and the top header stores cursors to the iterator headers and gives this way
the sorted order of the top elements. The latter two headers are used to facilitate
a fast top() function. For the maintenance of the segment header and the arrays
pointed to, we refer to [15]. Each header can be realized using a std::vector. Since
in each header the number of entries in use is O(log2 n), the manipulation of the
headers does not destroy our bounds for the number of instructions.
The navigation information stored for Bh is a sequence of 2h+1 bits. In the worst

case the largest block is empty and the first nonempty block lacks exactly 25 ele-
ments. Hence, if there are n elements in the structure, we use at most 4n+O(1) bits
for all bit sequences.
Let us next consider the implementation of the priority queue operations one at

a time. For a sequence of n elements, the construction of navigation piles needed
can be easily carried out blockwise. Of the at most 1+

⌊

log2 n
⌋

nonempty blocks
all except the last one gets full. For a full block of size 2h exactly 2h−1 element
comparisons are done. From this and the analysis of Section 2 — recalling that
the top header must be sorted — it follows that n+Θ(log2 n log2 log2 n) element
comparisons, n element moves, and O(n) instructions are performed in total.
We assume that the push() and pop() functions maintain the top and iterator head-

ers. When these are available, the top() function can be readily executed using O(1)
instructions by following the cursor to the iterator header and further the iterator to
the top element.
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extra bits
elements

bit header
•
•
•
•

segment header
•
•
•
•

top header
•
•
•
•

iterator header

•
•
•
•

top of B∗
top of B5
top of B6
top of B7

B∗

B5

B6

B7

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•
•
•
•
•

Fig. 3: A collection of navigation piles storing 77 elements. A space-efficient resizable array is
used as the container for the elements. The gray areas denote empty memory segments allocated for
dynamization purposes.

The push() function inserts the given element into the largest nonempty block;
if that block is full, the element is inserted into a new larger block and a naviga-
tion pile containing this single element is constructed. Since the size of the largest
nonempty block is at most n/2, the push() function in that block takes at most
log2 log2 n+O(1) element comparisons. The construction of a navigation pile of
size one requires O(1) instructions. After the insertion, if the top element of the
largest nonempty block changed, the iterator and top headers are updated. This
requires log2 log2 n+O(1) additional element comparisons. To sum up, at most
2 log2 log2 n+O(1) element comparisons, one element move, and O(log2 n) instruc-
tions are carried out.
The pop() function erases the top element by overwriting it with an element taken

from the largest nonempty block. The selection of the replacing element is based on
the first and the second ancestors of the last leaf having two children. Thereafter a
partial path update may be carried out in the last nonempty block and a full path up-
date in the block that contained the top element. For the fast top() function, we must
update the top and iterator headers. The top element of the last nonempty block
does not change (unless it became empty), but that of the other block may change.
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Hence, one binary search may be necessary to keep the top elements of the blocks
in sorted order. After the correct place of a new top element is located, O(log2 n)
moves of cursors might be necessary in the top header. To sum up, the pop() func-
tion performs at most log2 n+log2 log2 n+O(1) element comparisons, two element
moves, and O(log2 n) instructions.

5. Priority deques

To transfer our static and dynamic priority queues to priority deques, we use the
twin technique described in [16, p. 645]. We pair the elements, and order the el-
ements in the resulting pairs. If the number of elements being stored is odd, we
keep one element in its own block B#. This way the elements get partitioned into
two disjoint collections: the top-element candidates and the bottom-element can-
didates. These collections can be handled separately using our earlier techniques:
in the priority queue for the top-element candidates the ordering function less()
is used and in the priority queue for the bottom-element candidates its converse
function is used.
The construction of a priority deque can be done is two phases: first the elements

are compared pairwise and moved into their respective candidate collections, and
then the two priority queues are constructed. For an input sequence of size n, the
first separation phase requires )n/2* element comparisons and n element moves. In
the second phase the elements are not moved any more. Using the bounds derived
for priority queues, the total number of element comparisons is never more than
1.5n+O(1) in the static case and 1.5n+Θ(log2 n log2 log2 n) in the dynamic case,
and that of element moves is n in both cases. If the top() and bottom() functions
are to have a sublinear complexity, the creation of these data structures cannot be
sped-up much because &3n/2'−2 element comparisons are necessary to find both
the maximum and minimum of n elements (see, for example, [21, §3]). The space
consumption of the static and dynamic priority deques cannot be larger than two
times that of a corresponding priority queue storing n/2 elements.
The resource bounds for the top() and bottom() functions are the same as those for

the top() function in the priority queues. We only have to remember the element in
B# if there is any. In the static case, this may cause one extra element comparison.
In the dynamic case, B# can be seen as the other blocks, so for all n ≥ 1 the number
of blocks is bounded by 2+

⌊

log2 n
⌋

in both priority queues.
The push() function must also take the element kept in B# into consideration.

There are two cases to consider. If B# is empty, the element being inserted is
copied there. If B# contains an element, this and the new element become twins,
and this pair is added to the data structure. An element comparison is performed to
know which of the elements is inserted into the top-element candidate collection
and which into the bottom-element candidate collection. In the dynamic case, the
pointers to the current top and bottom elements are updated if necessary, which
may require two binary searches. Hence, the resource bounds are double as high
as the corresponding bounds for the priority queues.
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The pop top() and pop bottom() functions are symmetric so we consider only
the first one. Again there are two cases depending on the contents of B# (for an
illustration, see Fig. 4). If B# is empty, we destroy the top element and move its
twin to B#, take two elements from the last nonempty blocks — using the first and
the second ancestors of the last leaf having two children for both blocks — and
after a single element comparison move the selected elements to the holes created.
Thereafter, a partial path update is performed in the last nonempty blocks, and a
full path update in the blocks that received new elements. For the correctness it
is important to note that an element taken from the leaf referred to by the offset
stored at the first child of the second ancestor of the last leaf having two children
is replaced with a nonsmaller element taken from the last leaf, so even after the
replacement the new element is not smaller than its twin. In the worst case five
element moves may be necessary to get the elements involved into their correct
locations. If B# contains an element, this can be used as a twin for the twin of
the destroyed element. After a single element comparison the elements are moved
to their correct locations and the update full path() function is invocated at most
twice. In the dynamic case, at the end the top and iterator headers are updated if
necessary using binary search. Again the resource bounds can be about twice as
high as those for the priority queues.

•

•

• •

•

• •

16 41 18 15 8 12 11 13 top-element candidates

5 28 13 1 4 6 10 3 bottom-element candidates

•

•

• •

•

• •

Fig. 4: Illustration of the pop top() function. We assume that the last nonempty blocks are only
of size 8, that the top element is inside the last nonempty block, and that B# is empty. The vertical
alignment of the leaves indicates the twin relationship. As in Fig. 2, the nodes whose contents may
change are indicated in light gray; for the shadowed branches the update can always be done without
element comparisons. The element in the black leaf will be moved to B#.



258 J. KATAJAINEN, F. VITALE

6. Generalizations of navigation piles

In this section we briefly discuss some generalizations of navigation piles. Our
goal is to find ways to reduce the height of the pile and hereby reduce the time
needed for index manipulations.
Pagter and Rauhe [20] proposed a variant where a bunch of elements forming a

bucket is stored at each leaf. A further idea, which is crucial in their construction,
is to partition the buckets hierarchically into blocks whose size is a power of 2, and
extend the branches to contain a pointer to the block containing the top element.
For a branch having height γ, the block pointer contains min

{

γ, log2 B
}

bits, where
B — a power of 2 — is the bucket size. That is, the number of navigation bits
at each branch is at most doubled, but the number of bits needed for the whole
tree is proportional to n/B. At the upper levels of the tree the block pointer gives
the location of the top element exactly, whereas at the bottom levels the location
is only approximate and sequential search inside the block is needed to locate the
top element. A navigation pile with buckets of size Θ(log2 n) is important since it
gives the same asymptotic time bounds as a normal navigation pile, but it needs
only O(n/ log2 n) extra bits.
Since our goal is different, we propose that, instead of a binary tree, a d-ary tree

is used as the underlying tree structure in a navigation pile. We sketch next how
this could be done efficiently for d = 4; the generalization for larger values of d is
also possible.
An offset stored at a branch of a normal navigation pile indicates the top element

stored in its leaf sequence. Assume that the offset has γ bits. The most significant
bit of these γ bits tells whether the top element lies in the subtree rooted by the first
or second child. In a sense this bit indicates the sorted order of the top elements
referred to by the offsets stored at the children. This idea can be generalized by
letting the navigation information stored at a branch consist of two parts: a state
and an offset to the top element as earlier. A state should indicate the sorted order
of the top elements referred to by the offsets stored at the children in use. For d = 4,
there are

∑4
c=1 c! = 33 possible states in all.

A complete d-ary tree having 4η leaves has (4η−1)/3 branches. An offset stored
at a branch having height γ should have 2γ bits. Hence, the total number of bits to
be stored is

η−1
∑

δ=0
(
⌈

log2 33
⌉

+2(η−δ))4δ < 26
9
4η .

Since the capacity of a 4-ary navigation pile must be a power of 4, the number of
bits needed can be no more than 12 times the number of elements stored in the
structure.
Let us now consider how the state information can be used. The offsets are used

as described earlier so in the push() and pop() functions the key is to consider how
the path updates required by these functions are done. Assume that we are in some
branch in a traversal from a leaf to the root. First, we read the state information
which also gives the degree of the branch. Second, we unravel whether we came to
this branch from the first, second, third, or fourth child. Third, since the old state
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indicates the sorted order of the top elements referred to by the offsets stored at the
children of the branch considered, we can with at most two comparisons determine
the position of the top element in its leaf sequence. Finally, the new state and the
new offset are computed.
The program carrying out the tasks simply consists of a switch statement having

4 · 33 = 132 entries. Each entry is specialized for one possible configuration de-
pending on the index of the child from which we came and the old state. Actually,
some entries in the switch statement are extraneous since, for example, a branch
storing a state that indicates the order of four elements cannot have a degree less
than three after a single modification. For d = 4 the programs can be written by
hand, but for larger values of d they should be generated automatically or semiau-
tomatically. The basic idea is to carry out binary search among the top elements
referred to by the offsets stored at the children different from the child, from which
we came.
In the case d = 4, at most two element comparisons are necessary at each entry

of the switch statement. Since the root of a 4-ary navigation pile storing n elements
has height

⌈

log4 n
⌉

, the total number of element comparisons is the same as that in
the binary case. The increase in the arity does not have an effect on the number
of element moves performed. Moreover, very few instructions are executed per
element comparison, packing and unpacking integers being the main source of
instruction overhead.

7. Conclusions

Our results are summarized in Table I. Using a heap, which stores pointers or
cursors to the elements instead of the elements themselves, similar results could be
achieved, but such a data structure would require Θ(wn) or Θ(n log2 n+w) extra bits.
On the other hand, in-place methods seem to require more element comparisons
and element moves than those based on navigation piles. Hence, our results fall
between these two extremes showing that many element comparisons and element
moves can be avoided, even for the dynamic structures, by allowing the usage of
O(n+w

√
n) extra bits and O(

√
n) extra elements.

We close the paper with three open problems:
(1) A run-relaxed heap [7] can be made to support both the push() and top()

functions in constant time (even though the paper only states a logarithmic
bound for the top() function). It may be possible to improve the efficiency of
our push() function in the same way, but it is not clear for us whether such an
improvement is of practical value.

(2) The iterator validity is discussed in several places in the C++ standard [12].
In the STL a priority queue is not required to support iterators to the ele-
ments, but our data structures can be extended to support bidirectional it-
erators so that the iterators are valid under the insertion and erasure of el-
ements. To achieve this, the element indices are kept in a doubly-linked
list, and the addresses of the nodes storing the indices are used as iterators.
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T I: Summary of the results.

N : the maximum number of elements stored
n : the current number of elements stored
w : the length of the machine word

#extra bits 2N+O(w)
#extra elements 0
navigation pile constructor top() push() pop()

# comparisons n−1 0 log2 log2 n+O(1)
⌈

log2 n
⌉

# moves n 0 1 2
# instructions O(n) O(1) O(log2 n) O(log2 n)

#extra bits 4n+O(w)
#extra elements 1
sorting pilesort

# comparisons n log2 n+0.59n+O(1)
# moves 2.5n+O(1)
# instructions O(n log2 n)

#extra bits 4n+O(w
√
n)

#extra elements O(
√
n)

priority queue constructor top() push() pop()

# comparisons n+o(n) 0 2 log2 log2 n+O(1) log2 n+log2 log2 n+O(1)
# moves n 0 1 2
# instructions O(n) O(1) O(log2 n) O(log2 n)

#extra bits 4n+O(w
√
n)

#extra elements O(
√
n)

priority deque constructor top()
bottom()

push() pop top()
pop bottom()

# comparisons 1.5n+o(n) 1 4 log2 log2 n+O(1) 2 log2 n+2 log2 log2 n+O(1)
# moves n 0 2 5
# instructions O(n) O(1) O(log2 n) O(log2 n)

If each element is associated with its iterator, updates and moves can be han-
dled in constant time. Since there is a direct access from an iterator to the
corresponding element, operator*() takes constant time. Due to the linked-
list structure, operator++() and operator--() can be performed in constant
time. Since for our data structures each modifying operation requires only a
constant number of element moves, the overhead of maintaining the element
indices for the iterators is a constant per operation. However, we do not know
how efficiently random-access iterators can be supported.
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(3) If the navigation pile is extended to allow access to the elements through iter-
ators, operations increase key() and erase() can be supported with the same
efficiency as push() and pop(), respectively. Since a run-relaxed heap sup-
ports the increase key() operation in constant time, one could ask whether
our resource bounds for that function could also be improved.
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