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Abstract

We present Gern, a novel scalable framework for training GNNs in
node classification tasks, based on effective resistance, a standard
tool in spectral graph theory. Our method progressively refines
the GNN weights on a sequence of random spanning trees suit-
ably transformed into path graphs which, despite their simplicity,
are shown to retain essential topological and node information of
the original input graph. The sparse nature of these path graphs
substantially lightens the computational burden of GNN training.
This not only enhances scalability but also improves accuracy in
subsequent test phases, especially under small training set regimes,
which are of great practical importance, as in many real-world
scenarios labels may be hard to obtain. In these settings, our frame-
work yields very good results as it effectively counters the training
deterioration caused by overfitting when the training set is small.
Our method also addresses common issues like over-squashing and
over-smoothing while avoiding under-reaching phenomena.
Although our framework is flexible and can be deployed in sev-
eral types of GNNs, in this paper we focus on graph convolutional
networks and carry out an extensive experimental investigation
on a number of real-world graph benchmarks, where we achieve
simultaneous improvement of training speed and test accuracy over
a wide pool of representative baselines.
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1 Introduction

Graph Neural Networks (GNNs), particularly Graph Convolutional
Networks (GCNs) [31] and Graph Attention Networks (GATs) [45],
have demonstrated remarkable success in a variety of application
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domains, including social networks, molecular biology, and com-
puter vision. However, the fundamental message-passing operation
intrinsic to most GNN learning schemes requires each node to pool
data from all neighboring nodes: This leads to high computational
and memory requirements, thereby limiting the scalability of GNNs
and their applicability in some real-world scenarios.

Besides the mere scalability, there are other computational is-
sues that hamper the discriminative power of GNNs. In real-world
applications of node classification, where label acquisition costs are
high, we might be forced to train the GNN with only a few node
labels: under such small training set regimes, a GNN is naturally
more prone to overfitting and its performance deteriorates (see, e.g.,
[28]). Further issues that typically emerge in GNN training are the
so-called over-squashing and over-smoothing phenomena.

Over-smoothing refers to the excessive compression of node
features in GNNs during the aggregation phase, causing a loss of
discriminative information (see, e.g., [9, 38]). In GCNs, for example,
features are combined in a weighted manner by averaging the
features of neighboring nodes. The problem arises when nodes
with different features end up having similar representations after
multiple layers of aggregation, making it difficult for the model
to distinguish among them. This is particularly challenging when
the activation function aggressively compresses the input into a
narrow range of output values (like a sigmoid) potentially leading
to the vanishing gradient problem, which makes it difficult to learn
useful representations of the input data.

Over-squashing [3, 4, 17, 44] occurs when an exponential amount
of information is compressed into a fixed-size vector. This compres-
sion can result in a loss of critical information, hence degrading
the performance of the GNN. The receptive field of a node, which
is the region or set of input values that a particular node can pro-
cess, tends to grow exponentially with each additional layer in
the network. This rapid growth often leads to a bottleneck effect,
exacerbating over-squashing. Both GCNs and GATs suffer from
over-squashing, as they rely on iterative message passing schemes
for feature aggregation. In deeper GNNs, over-squashing becomes
way more pronounced, since the node representations become in-
creasingly influenced by distant nodes in the graph, which may
cause all node embeddings to converge to the same value.

The information overload and feature homogenization at the
basis of over-squashing and over-smoothing might be mitigated
by limiting the depth or breadth of a node’s receptive field. Yet,
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these adjustments can lead to the reverse issue, sometimes called
under-reaching, whereby nodes in the network fail to access crucial
distant information, impacting GNN training and inference.

Our contributions. In this paper, we propose Gern (Graph Ef-

fective Resistance Network), a GNN-training framework for node
classification which, besides improving scalability, helps mitigate
typical issues, such as over-squashing, over-smoothing, and the
degradation of performance in small training set regimes while, at
the same time, avoiding under-reaching issues. The key idea at the
basis of our training framework is weighted feature aggregation,
where the weights are provided by the effective resistance of the
edges incident to the node being classified. Effective resistance is
a powerful tool widely used in the graph learning literature – see,
e.g., [1, 4, 7, 8, 21, 24, 25, 42] – which captures both local and global
topological properties of the graph at hand. The rationale behind
our idea lies in the so-called homophily principle, a standard induc-
tive bias in graph learning, posing that strongly connected nodes
tend to share the same labels. Effective resistance allows to tell
apart dense substructures which are weakly interconnected among
them: in a homophilic setting, we can expect these substructures
to be homogeneously labeled.

Unfortunately, computing the effective resistance of each edge
in a large graph is computationally prohibitive. To overcome this
challenge, we propose a novel and scalable method that iteratively
refining the GNN weights during the training process, allowing
to efficiently approximate the effective-resistance-based weighing
scheme. Our method operates on a sequence of uniformly gener-

ated Random Spanning Trees (RSTs) of the input graph 𝐺 , suitably
“linearized” into Random Path Graphs (RPGs), designed to retain
essential topological and node information of 𝐺 . The sparsity of
the RPGs enables much lighter GNN training operations; in fact,
the number of edges used in each epoch is never larger (and of-
tentimes far smaller) than the number of input nodes. We also
introduce very fast heuristics for generating RSTs that approximate
uniformly generated ones, and experimentally validate the accu-
racy of this approximation. A key property of these RSTs is that
they can be generated in parallel during training. We empirically
demonstrate that our training framework, when generating RSTs
in parallel, is about 5-10 times faster than competing approaches,
while almost consistently outperforming these competitors in test
accuracy on well-known real-world datasets.

Gern can be viewed as a GNN equipped with a randomized self-
attention mechanism [45], where the randomized node selection
relies on a distribution directly related to the effective resistance of
the involved edges within the graph. Moreover, the use of multiple

RSTs suitably transformed into RPGs acts as an implicit regularizer.
In fact, our training approach sequentially hones the GNN weights
through a series of randomly selected ultra-sparse representations
of the input graph. Although our framework is flexible and can be
deployed in several types of GNNs, in this paper we focus in partic-
ular on the message passing architecture of the classical GCN [31],
as well as on the GraphSAGE architecture [23].

Experimental validation. In our experiments under small train-
ing set regime on various real-world graph benchmarks (Section
5), Gern demonstrates improved training speed and test accuracy
compared to a wide array of representative baselines, including

prominent graph modification/sparsification and sampling tech-
niques aimed at accelerating GNN training. More specifically, we
benchmark our method against a graph coarsening algorithm, as a
representative of graph modification techniques, and against rep-
resentative methods for training acceleration based on node-wise,
layer-wise, and subgraph-wise sampling. Additionally, we compare
Gern to a standard GCN and a Multilayer Perceptron (MLP). No-
tably, MLPs, which process inputs disregarding the graph structure,
may outperform GNNs under certain conditions. In fact, when the
training set is small, most of the methods face an overfitting issue,
which might be exacerbated for sampling-based GNN methods.
These methods might end up not having enough information in
the neighborhood of the node being classified. However, even in
such cases, Gern upholds a consistently robust performance.

We also experimentally verify that our proposed technique
largely mitigates over-squashing and over-smoothing phenomena
during the training phase. In doing so, we resort to metrics that
have recently been proposed in the literature [17, 47]. Further, we
show that unlike standard 𝑘-hop GNNs, Gern allows for larger
values of 𝑘 to avoid under-reaching, as operating on RPGs instead
of the whole graph prevents data congestion and loss of feature dis-
tinctiveness, still ensuring selective node coverage suitably guided
by effective resistance. Finally, we conduct an ablation study to
quantitatively evaluate how converting RSTs into path graphs, a
crucial process for Gern, impacts its test accuracy.

Reproducibility. For the sake of full reproducibility of our experi-
mental results, our code is available at the link https://github.com/
panisson/gern/blob/main/README.md.

2 Related work

The literature on GNN training acceleration is extensive and rapidly
expanding, making it challenging to do justice to all the contributing
algorithms. Here, we briefly outline some general methodologies for
improving/accelerating the training phase. The algorithms used in
our experimental evaluation are listed in Section 5, while a broader
discussion on the state of the art is contained in Appendix A.

Node-wise sampling [15, 23] reduces the computational load by
focusing on individual nodes, selectively aggregating neighbor in-
formation. Layer-wise sampling [10, 27, 51] controls neighborhood
size per layer, managing computational complexity effectively. Sub-
graph sampling techniques [40, 49] accelerate GNN training by oper-
ating on representative subgraphs preserving essential graph prop-
erties. Besides sampling strategies, graph coarsening [5, 28, 34, 35]
and graph condensation [29] aim to reduce the graph size while
maintaining structural integrity, by either merging similar nodes
to form a simplified graph, or by compressing graph data into
a denser representation that retains key properties. Other meth-
ods [13, 32] divides graphs into manageable subgraphs, facilitating
parallel processing and scalability. Finally, techniques employing
graph sketching and transformation [18] reduce the computational
burden by simplifying the message passage operations.

It is also worth mentioning that various approaches such
as [16, 39] exploit the effective resistance connectivity measure,
similarly to Gern. However, while these methods typically resort
to rewiring techniques on a single graph, Gern distinguishes itself
by aggregating multiple ultra-sparse versions of the input graph,
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marking a significant departure from these other techniques. Yet, it
is worth pointing out that the sparsification produced by GERN can
potentially be combined with existing sampling methods, specifi-
cally when the sampling is independent of the training process.

3 Preliminaries and Notation

Node classification. We are given a simple, unweighted, undi-
rected and connected graph 𝐺 (𝑉 , 𝐸) with 𝑛 = |𝑉 | nodes,𝑚 = |𝐸 |
edges, and no self-loops. Given 𝑐 classes, 𝑐 ≥ 2, each node 𝑖 ∈ 𝑉
hosts a labeled sample (𝒙𝑖 , 𝑦𝑖 ), where 𝒙𝑖 is a feature vector (or set
of node attributes or initial embedding) living in some feature space
X, and 𝑦𝑖 ∈ [𝑐] is the class label assigned to node 𝑖 . In the (trans-
ductive) node classification problem, the set of nodes𝑉 of𝐺 is split
into a training set Vtr ⊂ 𝑉 and a test set Vte = 𝑉 \Vtr. The learning
algorithm is given access to all feature vectors 𝒙1, . . . , 𝒙𝑛 at the
nodes in the graph, as well as the labels 𝑦𝑖 of the training nodes
𝑖 ∈ Vtr. The goal is to predict the labels of nodes in the test set Vte.
We are specifically interested in the scenario where |Vtr | ≪ |Vte |
(small training set regime).
GNNs. There are several GNN schemes in the literature, from
neighborhood aggregation (GraphSAGE, [23]) to spatial convolu-
tion (GCN, [31]) to self-attention (GAT, e.g., [45]), and beyond. Yet,
the majority of GNN learning schemes can be viewed as performing
message passing operations on the feature vectors sitting at each
node, followed by feature transformation fed to a suitable activation
function. The main idea behind message passing is to iteratively
update node representations (feature vectors) by aggregating in-
formation from neighboring nodes and passing messages between
them. This process helps capture both local and global structural
patterns within the graph.

Let 𝑑ℓ be the number of components of the node feature vectors
in the ℓ-th neural network layer. A GNNmessage-passing scheme is
typically defined as a function that computes a vector 𝒙 (ℓ+1)

𝑖
∈ R𝑑ℓ+1

for the next layer ℓ + 1 as:

𝒙 (ℓ+1)
𝑖

← 𝜸 (ℓ )
(
𝒙 (ℓ )
𝑖
,

⊕
𝑗∈N(𝑖 )

𝜙 (ℓ )
(
𝒙 (ℓ )
𝑗

) )
, (1)

where 𝜸 (ℓ ) is an update function sitting in layer ℓ , N(𝑖) is the
set of nodes in the neighborhood of node 𝑖 ,

⊕
is a permutation-

invariant operator (e.g., maximum, minimum, average, max-
pooling, weighted sum, etc.) to aggregate the set of incoming mes-
sages from the neighbors of node 𝑖 , and 𝜙 (ℓ ) is a message function
in layer ℓ . When 𝜙 (ℓ ) ,

⊕
, and 𝜸 (ℓ ) are differentiable operators,

message-passing layers can be stacked and their parameters can
be learned end-to-end via backpropagation. In the above scheme,
for each node 𝑖 , the message function 𝜙 (ℓ ) computes messages that
will be sent to its neighbors N(𝑖). This function takes into account
the features 𝒙 (ℓ )

𝑖
in layer ℓ of the sender node 𝑖 , the features 𝒙 (ℓ )

𝑗

of the receiving nodes 𝑗 ∈ N (𝑖), and possibly the features of the
edges connecting them (although we will not consider problems
with edge features here). The message function 𝜙 (ℓ ) can be im-
plemented as a deep neural network (DNN), and its parameters
are typically learned during training. The update function 𝜸 (ℓ )

computes the new node representation 𝒙 (ℓ+1)
𝑖

based on aggregate

messages 𝜙 (ℓ ) (𝒙 (ℓ )
𝑗
), and the previous node representation 𝒙 (ℓ )

𝑖
.

This function too can be a DNN with learnable parameters.
The above process is repeated for a fixed number of iterations

or until a convergence criterion is met. Message passing allows
information to propagate through the graph and enables each node
to capture information from more distant nodes. After the final
iteration, a readout function combines the node representations to
generate a graph-level representation or output, which can then be
used for downstream tasks, like node classification.

A GCN is a special case of (1) where the aggregation of fea-
tures of neighboring nodes is carried out through a symmetric, left
normalized adjacency matrix. This design choice promotes smooth-
ness and robustness in the learned features while preserving the
structural properties of the graph. Yet, GCNs rely on a fixed, pre-
defined aggregation function, which may limit their ability to model
complex relationships among nodes.

4 Gern Training Framework

Before presenting our training framework, we need to provide some
technical background on effective resistance and graph linearization
via Random Spanning Trees (RSTs).

4.1 Homophily, cut-size, effective resistance,

and RSTs

The first basic measure of homophily of the input graph 𝐺 w.r.t.
training set {(𝑥𝑖 , 𝑦𝑖 )}𝑛𝑖=1, is the so-called cut-size Φ(𝐺,𝑦), that is,
the number of (𝑖, 𝑗) ∈ 𝐸 such that 𝑦𝑖 ≠ 𝑦 𝑗 (sometimes called cut-

edges). This is a metric that captures the label complexity1 of the
node classification problem. A standard inductive bias in graph
learning is the so-called homophily principle that essentially posits
that strongly connected nodes tend to share the same labels, so that
Φ(𝐺,𝑦) tends to be small on “typical” graphs.

Although this measure has been used in the node classification
literature, it has several disadvantages because it scales with |𝐸 | in
a density-dependent way while the number of labels to predict is
only at most 𝑛, and dense areas of 𝐺 typically contain a number of
cut-edges larger compared to the sparse ones.
The effective resistance-weighted cut-size. A more refined no-
tion of cut-size for node classification that exhibits very appealing
properties is the effective resistance-weighted cut-size

Φ𝑅 (𝐺,𝑦) =
∑︁

(𝑖, 𝑗 ) ∈𝐸 : 𝑦𝑖≠𝑦 𝑗

𝑟𝑖, 𝑗 ,

where each edges (𝑖, 𝑗) ∈ 𝐸 with mismatching labels is weighted
according to its effective resistance 𝑟𝑖, 𝑗 in 𝐺 . In the interpretation
of the graph as an electric network, where the edge weights are
the edge conductances (which are all 1 in our case, as our graphs
are unweighted), the effective resistance 𝑟𝑖, 𝑗 between two (non-
necessarily adjacent) nodes 𝑖 and 𝑗 is the voltage between 𝑖 and 𝑗
when a unit current flow is maintained through them. We expect
that 𝑟𝑖, 𝑗 will be small whenever there are many edge-disjoint (and
short) paths between 𝑖 and 𝑗 , and large otherwise. For instance,
if 𝐺 is a social network, 𝑟𝑖, 𝑗 is roughly inversely proportional to

1We could, in principle, also incorporate feature information, e.g., by considering
weighted graphs where the weight 𝑤𝑖,𝑗 of edge (𝑖, 𝑗 ) is, say, some function of the
distance between 𝒙𝑖 and 𝒙 𝑗 . However, we shall not explore weighted graphs here.
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the number 𝑛𝑖, 𝑗 of common friends/connections between users
𝑖, 𝑗 ∈ 𝑉 (even if 𝑖 and 𝑗 are not directly connected), and it is indeed
upper bounded by 2

𝑛𝑖,𝑗
. The largest possible value of 𝑟𝑖, 𝑗 is 1, which

corresponds to the case where 𝑖 and 𝑗 are adjacent nodes, and (𝑖, 𝑗)
is a bridge in 𝐺 , that is, an edge whose removal disconnects 𝐺 .
Hence, 𝑟𝑖, 𝑗 is locally density-dependent, in that the contribution of
edge (𝑖, 𝑗) to Φ𝑅 (𝐺,𝑦) is small if (𝑖, 𝑗) is located in locally dense
areas, and is large if (𝑖, 𝑗) is located in sparsely connected areas of
the graph.

The effective resistance 𝑟𝑖, 𝑗 between two adjacent nodes 𝑖, 𝑗 ∈ 𝑉
is also equal to the probability that (𝑖, 𝑗) belongs to a uniformly
generated Random Spanning Tree (RST) 𝑇 of 𝐺 (see, e.g., [36]).
As a consequence, Φ𝑅 (𝐺,𝑦) = E[Φ(𝑇,𝑦)], the expectation being
over the random draw of 𝑇 . Thus it is also immediate to see that
Φ𝑅 (𝐺,𝑦) ≤ 𝑛 − 1, no matter how big 𝐸 is.

The effective resistance matrix 𝑅 = [𝑟𝑖, 𝑗 ]𝑛×𝑛𝑖,𝑗=1 is also intimately
related to the inverse Laplacian matrix of 𝐺 , as we recall below.

For reference, we now provide a number of equivalent ways of
formally defining the effective resistance 𝑟𝑖, 𝑗 between two adjacent
nodes 𝑖 and 𝑗 . The equivalence of these definitions is often exploited
in the design of graph-based learning algorithms to solve problems
where homophily is the basic inductive principle.
• 𝑟𝑖, 𝑗 can be computed by applying the so called series and par-

allel laws of electrical networks (see, e.g., [36]).
• In an unweighted graph 𝐺 , 𝑟𝑖, 𝑗 is equal to the probability

that (𝑖, 𝑗) belongs to a uniformly generated random spanning
tree (RST) 𝑇 . —see, e.g., [36]. Hence, Φ𝑅 (𝐺,𝑦) is equal to the
expected number of cut-edges that happen to be included in
𝑇 , the expectation being over the generation of 𝑇 .
• 𝑟𝑖, 𝑗 can also be related to randomwalk in𝐺 since an RST can be

generated by using the following method: Start a random walk
from an arbitrary node, including all traversed edges except
the ones which create a cycle with the previously included
edges, until all nodes in 𝑉 are visited. The probability that
such a random walk includes edge (𝑖, 𝑗) ∈ 𝐸 is 𝑟𝑖, 𝑗 .
• 𝑟𝑖, 𝑗 can also be expressed in terms of the pseudoinverse of the

Laplacian matrix 𝐿 of𝐺 . The Laplacian matrix 𝐿 can be written
as 𝐿 = 𝐷 − 𝐴, where 𝐷 is the diagonal matrix containing
in its 𝑖-th diagonal entry the degree of node 𝑖 in 𝐺 , and 𝐴
is the adjacency matrix of 𝐺 . Given 𝐿’s pseudoinverse 𝐿† =
[𝐿†

𝑖, 𝑗
]𝑛×𝑛
𝑖,𝑗=1 we have, for each (𝑖, 𝑗) ∈ 𝐸 (and, actually, more

generally, for each (𝑖, 𝑗) ∈ 𝑉 2),

𝑟𝑖, 𝑗 = 𝐿
†
𝑖,𝑖
+ 𝐿†

𝑗, 𝑗
− 2𝐿†

𝑖, 𝑗
.

4.2 Graph linearization

With the above material handy, we are ready to describe how to
compress a given (unweighted) graph into a path graph (that is, a
list), together with the invariance properties of this compression.
This material is essentially taken from [8]. The method consists of
two steps: (i) drawing a RST𝑇 of𝐺 and, (ii) generating a path graph
𝑃 , where the nodes are ordered by a depth-first visit of 𝑇 , starting
from an arbitrary node of 𝑉 . We call a path graph 𝑃 so obtained a
Random Path Graph (RPG). Figure 1 illustrates this compression
procedure through an example. Note that this graph compression

scheme only operates on the graph topology𝐺 , that is, it completely
disregards the data information (𝒙𝑖 , 𝑦𝑖 ), 𝑖 ∈ [𝑛].

Two relevant properties of this graph compression scheme are
the following:
(i) The expected cutsize E[Φ(𝑃,𝑦)] of 𝑃 is at most 2Φ𝑅 (𝐺,𝑦).
This is because, for all labeling 𝑦, and all spanning trees 𝑇 , if 𝑃 is a
path graph obtained from 𝑇 via a depth first visit then Φ(𝑃,𝑦) ≤
2Φ(𝑇,𝑦) – see, [8], Thm. 6 therein. Hence, the loss of information
on the labeling 𝑦 of 𝐺 due to edge sparsification is, in expectation,
at most a factor of 2. Moreover, if the original graph 𝐺 has areas of
tightly connected nodes (as measured by effective resistance) then
these nodes tend to be mapped to contiguous stretches of nodes in
𝑃 , while areas of𝐺 that are weakly interconnected will be scattered
in 𝑃 across a few connected sub-paths. Since, by homophily, the
dense areas in 𝐺 tend to belong to the same class, we expect that
the linearization into 𝑃 will produce contiguous stretches of nodes
belonging to the same class, like the one exemplified in Figure 1
(right).

In [8] the authors show that in sequential node classification
tasks, running a simple 1-Nearest Neighbor (1NN) classifier on
an RPG 𝑃 derived from 𝐺 is an effective strategy in general. In
particular, a simple 1NN-based prediction method exists which
incurs, in expectation over the RST generation, a nearly optimal
number of mistakes across any given input graph, any labeling,
and any adversarial node presentation order, with lower and upper
mistake bounds linearly dependent on Φ𝑅 (𝐺,𝑦).

Since 1NN is a classifier one would naturally apply to the path
graph in Figure 1 (right), this intuitively suggest that the lineariza-
tion technique described here is a highly effective strategy for node
classification under homophilic assumptions.
(ii) The compression is very fast to compute. The expected run-
ning time for generating 𝑃 from𝐺 is essentially2 O(𝑛), independent
of |𝐸 | [46]. The linear expected running time only applies to the case
where the original graph 𝐺 is unweighted. This is one of the main
reasons why we decided to disregard possible (data-dependent)
edge weighting schemes during this preprocessing step.

Further background material on graph linearlization is contained
in Appendix B.

4.3 Graph Effective Resistance Network (Gern)

We next describe Gern deployed on the classical GCN [31]:

𝒙 (ℓ+1)
𝑖

← 𝜸 (ℓ )
(
W(ℓ ) ·

∑︁
𝑗∈N(𝑖 )∪{𝑖 }

1√︁
𝑑 𝑗𝑑𝑖

x(ℓ )
𝑗

)
. (2)

In the above, 𝑑𝑖 is the degree of node 𝑖 , W(ℓ ) ∈ R𝑑ℓ+1×𝑑ℓ are learn-
able weights, and 𝜸 (ℓ ) : R𝑑ℓ+1 → R𝑑ℓ+1 is a vector-wise non-
linearity (e.g., a ReLU activation) that operates on each component
separately. The message passing update (2) is executed for 𝑘 steps,
where 𝑘 is a small constant (a hyperparameter in our experiments).
The feature vector at the last layer 𝒙 (𝑘 )

𝑖
is then fed to a standard

2Linear time complexity holds for “almost” all graphs, except for pathological cases of
very dense and, simultaneously, high diameter graphs (like a so-called lollipop graph)
which never occur in practice.
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Figure 1: (Left) Input graph 𝐺 with 𝑛 = 9 nodes, each one

belonging to one of 𝑐 = 3 possible classes (yellow, orange,

and light blue). This example emphasizes homophily: 𝐺 can

be partitioned into 3 uniformly-colored cliques. (Center) An

RST (thick edges) 𝑇 of 𝐺 , along with a depth-first visit of

𝑇 , starting from the top-left orange node. The numbers in-

dicate the visit order. (Right) An RPG of 𝐺 computed from

the spanning tree 𝑇 . The linearization in this case produces

a path graph that can be split into stretches of uniformly

labeled/colored nodes.

softmax function to produce one of 𝑐 possible classes. Training the
model weights is carried out by mimimizing cross-entropy loss.

Gern is summarized in Algorithnm 1. There are two main train-
ing parameters, the maximal number of epochs 𝑧 (that is, the max-
imal number of gradient descent steps, which also corresponds
to the number of RSTs/RPGs generated during training), and the
number of hops 𝑘 , which is the total number of layers of the GNN.
The steps can be split into three phases: Step (1) is the generation
of RPGs, which can be heavily parallelized, as each pair (𝑇𝑒 , 𝑃𝑒 ) can
be generated independently for all 𝑧 epochs; Steps (2)–(4) are the
training phase, which are necessary for convergence; and Steps (5)–
(7) are the validation phase, which might be excluded depending
on the convergence criterion.

The algorithm has one extra ingredient, which is the generation
of RPGs via Approximate RSTs (A-RSTs). An A-RST is generated
through a fast hybrid method for RST construction. The method is
discussed in more details in Section 5.

An experimental validation of the approximation properties of
A-RSTs is contained in Appendix E.

4.4 Understanding why Gern works

The two main advantages of our training approach are: (𝑖) test-set
accuracy – A GCN trained via Gern outperforms in test accuracy
established GNN baselines on a number of real-world datasets,
specifically in small training set situations, and (𝑖𝑖) scalability –
Gern achieves similar or superior performance in significantly less
training time than the baselines we tested. We next discuss why
these claims hold in broad scenarios, and are not just inspired by a
serendipitous outcome of our experiments.

Test set accuracy. A distinctive feature of our GNN training
method is local feature aggregation that incorporates global graph
topology information. As illustrated in Section 4.3, this is achieved
by operating on multiple linearized versions of RSTs of the input
graph, that retain effective resistance information on the edges.
Whereas Gern’s local feature aggregation implicitly re-weights the
feature vectors of the neighbors of each node, other GNN methods

Algorithm 1 Gern
Input : 𝐺 (𝑉 , 𝐸) with 𝑛 = |𝑉 |; features 𝑋 = {𝒙1, . . . , 𝒙𝑛}; labels 𝑦𝑖 ,

𝑖 ∈ 𝑉 ; training set Vtr ⊂ 𝑉 ; validation set Vva ⊂ 𝑉 ;
Training parameters: Maximal no. of epochs 𝑧 ; no. of hops 𝑘 .
Initialization : Initialize model parameters with random weights

(e.g., Glorot).
For each training epoch 𝑒 = 1, 2, . . . , 𝑧 :

(1) Generate A-RST 𝑇𝑒 of 𝐺 and corresponding RPG 𝑃𝑒
(2) Perform the forward step on GNN(𝑋, 𝑃𝑒 ) to calculate the

log probabilities of all the labeling classes for each node in
the 𝑘-hop neighborhood of each node in Vtr

(3) Compute cross-entropy loss between log probabilities and
true classes 𝑦𝑖 , for 𝑖 ∈ Vtr

(4) Perform a back-propagation step on the training set to update
model weights through the 𝑘 layers

(5) Compute the log probabilities by running GNN(𝑋,𝐺)
(6) Compute cross-entropy loss between log probabilities and

true classes 𝑦𝑖 , for 𝑖 ∈ Vva
(7) If [convergence criterion] on validation set satisfied

then stop
Test accuracy: Compute accuracy of trained GNN(𝑋,𝐺) on

Vte = 𝑉 \ Vtr

do not consider the network topology at all when computing em-
beddings on neighborhoods. On one hand, the re-weighting scheme
based on effective resistance is supported by theoretical arguments.
On the other, operating with multiple RPGs, and incrementally
refining the GNN weights by sequentially running a GNN on each
RPG offers additional benefits: While a single RPG may not provide
comprehensive information of the input graph, the ensemble of
RPGs enables extensive coverage throughout the training process
for each node in the training set, even when the training set is
particularly small. In fact, this approach ensures that the features
of the nodes in a small training set can still effectively propagate to
their neighboring nodes acrossmultiple RPGs. Since the effective re-
sistance determines the edges of each RPG, generating a substantial
number of them proves highly beneficial. This strategy boosts the
chance that the most strongly connected neighbors of each training
node in 𝐺 will be in close proximity within a significant portion of
the RPGs created. As a consequence, this scheme acts as an implicit
regularizer, reducing overfitting even on small training sets.

Another key feature of Gern is its ability to counter over-
squashing and over-smoothing phenomena. This feature is a di-
rect consequence of our handling of the input graph 𝐺 via RPGs
only. A more extensive discussion about how Gern mitigates over-
squashing and over-smoothing is given in Appendix C. Supporting
empirical evidence based on over-squashing and over-smoothing
metrics are provided in Section 5. Below we jsut provide illustrative
intuitions.

Figure 2(b) depicts the typical bottleneck which generates over-
squashing, where the information the magenta node is passing on
to the red node is influenced by a large number of distant nodes.
By operating on a path graph, Gern mitigates this issue to a large
extent, as the degree of each node is at most 2, hence the number
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(a) Input graph G

(b) Message passing on whole graph

(c) Message passing on path graph

Figure 2: Over-squashing. The input graph (a) and the typical

bottleneck caused bymessage passing over a large number of

distant nodes (b). Instead (c), the message passing on a path

graph involves far less nodes which are distant from the one

at hand.
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Figure 3: Over-smoothing. Comparison of node embedding

updates in a dense GNN (left) vs. a path graph (right), while

averaging the feature vectors for each layer (and disregard-

ing for the sake of simplicity weight matrices and non-

linearities). The feature vectors in a dense GNN approach the

global average (which in this case is ⟨4.5, 4.7⟩) much faster

compared to the path graph.

of distant nodes influencing the message passing does not grow ex-
ponentially with the distance (Figure 2(c)). As for over-smoothing,
the benefits of Gern are illustrated in Figure 3, where we see that
already at the second layer, the features in the dense GNN (left)
tend to concentrate around the average, becoming rapidly indis-
tinguishable, while in the path graph (right) this effect is greatly
alleviated. Finally, since Gern prevents information overload and
feature homogenization, it is possible to select an appropriate value
for 𝑘 to reduce under-reaching. Indeed, by leveraging an ensemble
of several RPGs, Gern ensures an adequate coverage of the input
graph. More importantly, such node reachability is driven by the
effective resistance of the edges which, as a tendence, includes the
most informative nodes/edges only.

Scalability. Training with path graphs significantly speeds up
the message passing process. The computational cost for dealing
with path graphs is, of course, the time for generating them. Yet,
it is important to observe that the A-RSTs used in Algorithm 1 at
each training epoch can be computed in parallel, since they are
independent of the actual state of the training process (i.e., they

Table 1: Datasets statistics: No. of nodes |𝑉 |, No. of edges |𝐸 |,
average degree, No. of classes 𝑐, and No. of features.

Dataset |𝑉 | |𝐸 | |𝐸 |/|𝑉 | 𝑐 Features

Cora 2,708 5,429 2.00 7 1,433
Pubmed 19,717 44,338 2.25 3 500
OGBN-arXiv 169,343 2,315,598 13.67 40 128
AMiner-CS 593,486 6,217,004 10.48 18 100
OGBN-Products 2,449,029 61,859,140 25.26 47 100

do not depend on the GNN weights). As a result, the per epoch
training time of Gern is substantially faster – up to 10 times – than
competing GNN baselines; see Section 5 for details.

Overall, Gern stands as an innovative GNN training framework,
adept at executing randomized pooling operations on large-scale
graphs, while maintaining comparatively high accuracy perfor-
mance.

5 Experiments

We next assess the performance of Gern through comparative
experiments on popular node classification benchmarks.
Datasets. Table 1 shows key statistics of the datasets used in our ex-
periments. We focus on both small datasets, like Cora and Pubmed,
and larger ones, like AMiner-CS and OGBN-Products. In the Cora
and PubMed datasets, nodes represent documents while edges cor-
respond to citation links. Features are document keywords and a
class label is associated with each node. We treat the bag-of-words
of the documents as (row-)normalized feature vectors. The OGBN-
arXiv and OGBN-Products datasets are both from the Open Graph
Benchmark [26]. OGBN-arXiv is a directed graph representing the
citations between Computer Science arXiv papers. Nodes come
with a 128-dimensional feature vector obtained by averaging the
embeddings of words in its title and abstract. OGBN-Products is
an Amazon product co-purchasing network where nodes represent
products and edges indicate co-purchases. Following [13], node fea-
tures are extracted as bag-of-words from product descriptions and
reduced to 100 dimensions using Principal Component Analysis.
AMiner-CS is a citation graph based on DBLP [43] where each node
corresponds to a paper in Computer Science, and edges represent
citation relations between papers. Papers are categorized into 18
topics and feature vectors are obtained by averaging the embed-
dings of words in its abstract. All directed edges are turned into
undirected ones. Self loops are removed.
Experimental settings. For Cora and Pubmed, we follow the
experimental setup in [48] and [31]. For training, we randomly
sample 20 instances for each class and use them as labeled data.
All feature vectors are used for training. We report performance
of all models on 10 or 100 randomly drawn datasets splits of the
same size, using identical splits for all methods. Models are trained
up to a maximal number of epochs, and the epoch with highest
accuracy on the validation set is selected. We report the mean and
standard error of prediction accuracy on the test set. Since training
with a fixed number of nodes per class limits the models’ ability to
learn the class prior distribution, we also train using a proportion
of the nodes selected uniformly at random. For the small datasets
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(Cora and Pubmed) we use training sets sizes of 5% and 10%. For
the larger datasets (OGBN-arXiv, AMiner-CS, and OGBN-Products)
we use a smaller fraction of 1%.

We performed a grid search for best hyperparameters for all
models. We searched for best number of hidden channels across the
values 16, 32, 64, 128, 256, and for best number of layers in the range
2 to 5. Dropout rate was set to 0.5. The selected hyperparameter
values are reported in Appendix D.
Competing methods. As already underscored, our experimen-
tal assessment uses Gern coupled with a standard GCN [31], that
we call here GERN-GCN. We compare it against: (i) The method
proposed in [28], as representative of graph coarsening methods;
(ii) GraphSAGE [23], LADIES [51], GraphSaint [49], as represen-
tatives of node-wise, layer-wise and subgraph-wise sampling tech-
niques, respectively; (iii) Standard GCN [31], and standard Multi-
layer Perceptron (MLP). In addition, we also compare to LMC [40],
which combines a subgraph-wise sampling algorithm and embed-
dings retrieved from previous training steps. See Appendix A for
more information about these competing methods.

For the Gern models that rely on RPGs, we first generate a
number of RSTs (250 for Cora and Pubmed, 100 for OGBN-arXiv,
AMiner-CS and OGBN-Products) and cycle over them during the
training steps.
Training. Unless otherwise noted, we train the models using the
Adam optimizer [30] with learning rate 10−2 and weight decay (L2
penalty) 5 · 10−4, as reported in [31]. The convergence strategy
is a piecewise constant learning rate schedule [41] where, if the
validation accuracy does not increase for 100 consecutive steps,
we reduce the learning rate by a factor of 10−0.5 until it becomes
smaller than 10−4. We train for a maximum of 1000 training steps
each time the learning rate is reduced.
Inference. Following past experimental settings (e.g., [28, 49, 51]),
the inference step for both validation and testing in all experiments,
including the competing methods, uses information from all edges
in the graph. In order to improve scalability, we use an established
approach for inference. For each batch of nodes, we compute their
representations layer by layer, using all available edges. This leads
to faster computation as compared to immediately computing the
final representations of each batch. Once the output representations
are computed for each layer, we can offload these representations
from the GPU before proceeding to calculate the next layer’s repre-
sentation. By doing so, we effectively mitigate memory constraints
associated with large datasets while ensuring efficient utilization
of computational resources.
Accuracy results. Our test accuracy results are summarized in
Table 2, Table 3, Figure 5, as well as in additional plots and tables in
Appendix D. Table 2 and Table 3 show the test set accuracy of the
various methods under the different training conditions. The mean
and confidence intervals are measured by 100 repetitions under
the same hyperparameters but different training sets (of the same
size). For some combinations of dataset and methods, it was not
possible to perform 100 repetitions, but only 10 (5 in the case of
OGBN-Products); we flag these cases with an asterisk in both tables.
Smaller training sizes (e.g., 10 nodes per class) clearly show higher
standard error, mostly due to the higher variability in the choice of
the training set.

Figure 4: Over-smoothing and over-squashing metrics (see

main text) against number of layers for GCNs on the Cora

and OGBN-arXiv datasets (the higher the better). The num-

ber of hidden channels is set to 128. In the case of the over-

smoothing, the RSTs and RPGs lines largely overlap.

As for comparison to competing methods, in our experiments
Gern tends to outperform them. The only exception to this trend is
AMiner-CS and OGBN-Products with 1% and Pubmed with 10% of
training nodes, and our conjecture here is that Gern suffers more
when the distribution of classes in the dataset is highly unbalanced.
For instance, AMiner-CS is highly unbalanced in class proportion:
the two most common classes (out of 18) make 23% and 14% of the
nodes, respectively. As for dependence on the number of layers, the
learning curves in Fig. 5 as well as those in Fig. 6 in Appendix D
show that, as the number of layers of the GNN grows, Gern tends
to perform better, while a GCN shows signs of overfitting. This can
be seen from the fact that Gern has a higher training error than
the baselines, but better accuracy on the test set.

It is noteworthy that in some cases, the competitors exhibit in-
ferior performance even compared to MLP, which does not rely
on graph information. This may be due to their specific sampling
methods, which have not been thoroughly tested in the small train-
ing set regimes considered here. Some of these methods depend on
neighboring training nodes, which may be scarce or entirely absent
for small training set sizes, making them more prone to overfitting.

Over-squashing and over-smoothing measurements. In our
analysis of over-squashing and over-smoothing, we followed a
setup similar to [38]. Input features were initialized from a normal
distribution with mean 0 and variance 1, i.e. 𝑋 (0)

𝑗,𝑘
∼ N(0, 1) for all

nodes 𝑗 and features 𝑘 . Since the Dirichlet Energy proposed in [38]
as node similarity is intrinsically linked to graph topology, we
adopt instead the over-smoothing metric from [47], which satisfies
the same axioms. Given a matrix of node representation vectors
𝑋 ∈ R𝑛×𝑑 , with 𝑑 the dimension of their representations, node
similarity is measured as 𝜇 (𝑋 ) B

𝑋 − 1 1⊤𝑋𝑁 
𝐹
, where ∥ · ∥𝐹

is the Frobenius norm, and 1 is the all one-vector. Let 𝑋 (𝑡 ) be the
output of a GCN with 𝑡 layers, each having 128 hidden channels. A
higher value of 𝜇 (𝑋 (𝑡 ) ) implies reduced over-smoothing, as node
representations vary more significantly from the global mean. We
evaluated 𝜇 (𝑋 (𝑡 ) ) using GCNs with random initializations and
input features 𝑋 (0) . We conducted 100 trials on Cora and PubMed,
and 10 trials on OGBN-arXiv and AMiner-CS (we did not consider
OGBN-Products here). For measuring over-smoothing of RSTs and
RPGs, we generated and linearized a new RST in each trial.

7



KDD ’25, August 3–7, 2025, Toronto, ON, Canada Bonchi et al.

Table 2: Average accuracy and standard error for different methods applied to the Cora and PubMed datasets under various

training conditions. In cases marked with (*), we run only 10 repetitions instead of 100. In bold is the best performing method.

10 nodes per class 20 nodes per class 5% nodes 10% nodes

Cora Pubmed Cora Pubmed Cora Pubmed Cora Pubmed

MLP 74.36 ± 0.24 73.17 ± 0.29 79.46 ± 0.15 76.75 ± 0.20 80.89 ± 0.49 85.52 ± 0.14 81.43 ± 0.17 86.39 ± 0.03
GraphSAINT* 77.68 ± 0.66 73.42 ± 1.85 80.11 ± 0.60 78.08 ± 0.69 79.54 ± 0.20 84.69 ± 0.05 84.02 ± 0.28 86.43 ± 0.12
GraphSAGE 76.39 ± 0.18 73.66 ± 0.30 79.72 ± 0.16 75.77 ± 0.20 77.75 ± 0.22 85.33 ± 0.05 82.86 ± 0.13 86.30 ± 0.04
Coarsening 76.39 ± 0.24 74.03 ± 0.35 79.63 ± 0.16 76.12 ± 0.26 77.45 ± 0.27 84.79 ± 0.05 80.64 ± 0.18 85.78 ± 0.03
LADIES* 74.10 ± 0.78 74.68 ± 1.17 79.15 ± 0.51 77.07 ± 0.50 79.76 ± 0.61 85.80 ± 0.11 80.80 ± 0.44 87.34 ± 0.09

LMC 75.14 ± 0.25 72.64 ± 0.33 78.56 ± 0.17 75.23 ± 0.21 77.83 ± 0.19 81.67 ± 0.05 80.34 ± 0.12 82.55 ± 0.04
GCN 78.11 ± 0.17 75.16 ± 0.31 80.88 ± 0.13 77.64 ± 0.19 80.85 ± 0.17 85.74 ± 0.04 83.91 ± 0.11 86.58 ± 0.03
GERN-GCN 78.23 ± 0.18 75.94 ± 0.23 81.17 ± 0.13 78.48 ± 0.16 81.26 ± 0.17 85.84 ± 0.04 84.20 ± 0.12 86.53 ± 0.03

Table 3: Same as Table 2 with OGBN-ArXiv, AMiner-CS and OGBN-Products. For OGBN-Products, we always run 5 repetitions.

The graph coarsening method we experimented with on OGBN-Products resulted in Out of Memory (OOM) error for all

combinations of hyperparameters.

20 nodes per class 1% nodes

OGBN-arXiv AMiner-CS OGBN-Products OGBN-arXiv AMiner-CS OGBN-Products

MLP* 54.25 ± 0.61 51.11 ± 0.49 45.62 ± 1.64 61.51 ± 0.06 61.03 ± 0.16 82.55 ± 0.03
GraphSAINT* 46.93 ± 0.96 52.21 ± 0.69 51.54 ± 0.60 60.11 ± 0.20 62.93 ± 0.09 84.37 ± 0.05
GraphSAGE* 49.50 ± 0.51 48.72 ± 0.45 54.19 ± 0.58 62.36 ± 0.14 63.96 ± 0.08 85.31 ± 0.06
Coarsening* 37.58 ± 0.98 44.47 ± 0.94 OOM 62.30 ± 0.18 60.54 ± 0.24 OOM
LADIES* 51.58 ± 0.56 49.82 ± 0.48 34.73 ± 0.43 62.30 ± 0.14 60.56 ± 0.10 70.01 ± 0.03
LMC* 44.27 ± 1.18 40.93 ± 1.41 39.41 ± 0.63 55.09 ± 1.28 56.76 ± 1.03 73.48 ± 0.17
GCN* 53.55 ± 0.43 50.65 ± 0.50 55.24 ± 0.65 65.13 ± 0.11 64.48 ± 0.04 86.28 ± 0.02

GERN-GCN 58.13 ± 0.11 54.21 ± 0.15 56.75 ± 0.52* 65.93 ± 0.03 63.03 ± 0.05 85.77 ± 0.03*

Table 4: Average time per epoch and maximum memory

occupied on the GPU for GERN-GCN and the competitors,

for a GCN with 3 layers and 128 hidden channels, trained on

1% of OGBN-arXiv.

Avg. T train step (ms) Avg. memory GPU (MB)

MLP 13.72 ± 0.60 624.3 ± 1.0
GCN 38.90 ± 0.68 1003.6 ± 1.0
GraphSAINT 961.58 ± 27.25 204.7 ± 0.3
Graph Coarsening 37.67 ± 3.32 625.1 ± 43.6
LADIES 256.95 ± 2.45 424.8 ± 26.5
LMC 104.81 ± 3.37 895.3 ± 4.6
GERN-GCN 23.22 ± 0.52 991.7 ± 3.0

In our over-squashing analysis, we measure the gradients as sug-

gested in [17]. For a given node 𝑣 , we consider the norm
 𝜕𝑋 (𝑡 )𝑣

𝜕𝑋
(0)
𝑢


1

of the Jacobian after the 𝑡 layers of a GCN. A higher Jacobian norm
indicates that node 𝑣 is more influenced by another node 𝑢, thereby
mitigating the over-squashing effect. In each trial, we randomly se-
lect 20 nodes. For each node 𝑣 , we compute the sum of these norms
with respect to all the nodes 𝑢 in its 𝑡-hop neighbourhood on a
randomly extracted RPG, with 𝑡 the number of layers of the GCN.
To ensure a fair comparison, we use the same nodes for the RST
and the full graph evaluation. We then average across the nodes

𝑣 . The initial features and the number of trials are consistent with
those used in our over-smoothing experiment.

Results, reported in Figure 4, show that RPGs are more effective
on mitigating over-squashing effects compared to using either the
full graph or an RST thereof. Regarding over-smoothing, RPGs and
RSTs tend to perform similarly, as indicated by their overlapping
curves. However, both RPGs and RSTs outperform the full graph in
this respect.

Running times. We compare the average (wall-clock) time of one
training epoch and the GPU memory requirement of the tested
methods. For the sake of this comparison, we consider a GCN with
3 layers and 128 hidden channels on the OGBN-arXiv dataset using
1% of the dataset as train set, trained with the different methods. The
results are reported in Table 4. We used the same hyperparameters
for the methods as in the benchmark. For LADIES, we take into
account the sampling time of all the batches without parallelizing.
As Table 4 shows, GERN-GCN mostly outperforms its competitors
both in terms of speed: excluding Graph Coarsening, all the other
methods make use of batches, making the forward pass slower. The
only exception to this is LADIES, which would obtain similar times
to GERN-GCN if the batches where to be extracted in parallel. In
terms of peak memory occupied on the GPU, instead, GERN-GCN
performs similarly to the use of the full graph, showing a trade-off
between time and memory depending on the number of batches
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used for the train step. Note that in our implementation of GERN-
GCN, RSTs and RPGs are actually calculated in the CPU, not in
the GPU. Once the RPGs are calculated (in the CPU), we load in
the GPU memory only the 𝑘-neighborhood of the training nodes,
which has only 𝑛𝑘 edges. This drastically reduces the memory
footprint needed for representing the graph on the GPU. Table 10
(Appendix D) contains a comparison of training times for GCN and
GERN-GCN against number of layers.

The timings reported in Table 4 and Table 10 (see Appendix D).
exclude data loading, A-RSTs generation, and validation set eval-
uation, focusing solely on the execution of steps 2, 3, and 4 of
Algorithm 1. These are the steps directly involved in training. Steps
5, 6, and 7 therein are validation-specific. Step 1 can be parallelized,
as each A-RST is generated independently from the others: for in-
stance, on the experiment in Table 10, it takes approximately 2.9
seconds to generate 100 A-RST and linearize them on OGBN-arXiv.
Further experimental results. Additional experimental findings
are presented in Appendix D, such as an extended comparison of
the learning curves, the applicability of Gern with other GNN
architectures, and an ablation study to evaluate the impact of the
path linearization in terms of accuracy and graph cutsize.
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Figure 5: Validation loss trends when training with 20 nodes

per class, OGBN-Arxiv dataset.

sectionFuture Research and Limitations Our study lays the
groundwork for expansions involving a broader range of datasets
and comparative analyses for GNNs training, paving the way for di-
verse applications. Future work will focus on testing our framework
on denser graphs, integrating it with various GNNs beyond GCN
and SAGE, and establishing a solid criterion for the optimal number
of RSTs/RPGs for Gern. Another interesting research avenue is the
extension of our training methodology to heterogeneous (but still
homophilic) graphs.
Limitations.While our approach effectively addresses common
issues such as over-squashing and over-smoothing during training,
its impact during inference remains uncertain. Despite demonstrat-
ing both theoretically and experimentally Gern’s benefits in the
training phase, their extension to inference is still unclear. Future
research should focus on applying these advantages to inference to
fully realize the potential of Gern during validation and testing.
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A State of the Art

Several methods for accelerating GNN training have been proposed
in the literature. In fact, this literature has become quite voluminous,
and it has also been the subject of recent surveys – see, e.g., [33, 50].
In what follows we briefly describe the methods for GNN training
acceleration which we believe are most relevant to our paper.

Sampling-based methods have been proposed to reduce the com-
putational andmemory burden of GNNs [10, 11, 23, 27, 49]. In partic-
ular, a node-wise sampling method focuses on individual nodes. For
each target node in a batch, a subset of its neighbors is randomly se-
lected for aggregation. The key here is that the sampling is centered
around specific nodes, and the selected neighbors can vary greatly
from node to node. A node-wise sampling method is designed to
reduce the computational load when considering the neighbors of
each node individually. For instance, GraphSAGE [23] is an induc-
tive node-wise sampling method that generates embeddings for
out-of-sample nodes, by sampling and aggregating features from
the node’s neighbors. MVS-GNN [15] is a variance reduction algo-
rithm that uses adaptive importance sampling based on gradient
norms. The method minimizes training variance by leveraging his-
torical embedding information, thereby enhancing the efficiency
and stability of the optimization process. Node-wise sampling usu-
ally leads to high sample complexity mainly because it requires
recursive sampling for each node and layer.

In contrast, a layer-wise sampling method is one that performs
sampling for each layer of the GNN. For each layer, a fixed number
of neighbors is sampled for all nodes processed by that layer. This
approach ensures manageable computation by controlling the size
of the neighborhood at each layer. Among the layer-wise sampling
methods is FastGCN [10], which relies on importance sampling
to select a small subset of nodes for efficient computation of each
layer’s approximate gradient. Yet, this method requires a large sam-
ple size for layer-to-layer connectivity. LADIES [51] improves upon
this by limiting its sampling pool to the neighbors of previously
sampled nodes, thus reducing sample size and increasing density,
though it requires updating the importance sampling distribution
for each layer. Huang et al. [27] propose another layer-wise sam-
pling technique which samples each network layer based on the
one above, with fixed-size sampling to prevent over-expansion,
and includes a variance reduction feature for improved training
outcome.

Finally, subgraph sampling involves extracting smaller, repre-
sentative subgraphs from a larger graph for training, reducing
computational load while preserving key structural and feature
properties of the overall graph. GraphSAINT [49] can be viewed as
a representative of such methods. GraphSAINT uses random node,
edge, and subgraph sampling techniques to generate mini-batches
for training. The method also normalizes the graph data to reduce
the variance of the gradient estimates, making the training process
more stable and efficient. GNNAutoScale [20] is another subgraph
sampling for scaling GNNs to large graphs, which reduces the size
of the computation graph by means of embeddings from previ-
ous training steps. LMC [40] is another recent algorithm, which
draws from this idea of combining subgraph sampling, and past
embeddings to address the neighbor explosion problem in training
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large-scale GNNs. This method uses a subgraph-wise sampling tech-
nique that retrieves discarded messages during backward passes,
preserving gradient accuracy and ensuring provable convergence.

We note that none of the sampling techniques mentioned above
is similar to the one exploited by Gern.

Other approaches in the literature aimed at making GNN training
more scalable, without resorting to sampling, are those that mod-
ify the graph itself. For instance, Graph Coarsening [5, 28, 34, 35]
consolidates nodes and edges of the original input graph into super-
nodes and super-edges by clustering its vertices. Another tech-
nique, Graph Condensation, generates a smaller (condensed) graph
on which training can be conducted, and the results can be applied
back to the original graph. This is verified by training on the origi-
nal graph in parallel. A representative example of this approach is
GCond [29], which aligns the training gradients from two GNNs to
create a condensed version of the input graph. It is crucial to note
that this method primarily accelerates the training of subsequent
GNNs, beyond the initial one provided as input, when multiple
GNNs are being trained on the same graph. This acceleration is
made possible by the initial gradient matching step which, however,
necessitates a costly GNN training on the original graph. Though
this method can legitimately be included among the methods for
GNN training acceleration (see, e.g., the survey by Zhang et al. [50]),
the initial gradient matching step turned out to be too expensive for
our experimental comparison. As a result, we did not include Graph
Condensation methods among the competitors in our experiments.

Cluster-GCN [13] partitions the graph into subgraphs, which
are then processed in a mini-batch manner, enabling parallelization
and thus scalability. Another paper relying on partitioning the in-
put graph is [32]. The authors propose a scalable semi-supervised
learning framework based on partitioning the graph into multiple
balanced subgraphs. Each subgraph is then independently pro-
cessed by a GNN. Chen et al. [12] propose an ingenious bidirec-
tional propagation method for GNNs. The method splits each graph
convolution into two half convolutions, one aggregating the infor-
mation from the neighborhood to the target nodes and the other
propagating the information back to the neighborhood. Finally,
Sketch-GNN [18] leverages sketching techniques to map high-
dimensional data structures into a lower dimension, which is done
before training. In particular, the authors sketch both the adjacency
matrix and the node feature matrix of the graph. The sketch-ratio
required to maintain “full-graph” model performance drops as the
graph size increases, implying that Sketch-GNN can scale sublin-
early with the graph size. In this regards, it is worth highlighting
that also the generation of each RPG for Gern turns out to be es-
sentially linear in the number of nodes of the graph, independent
of its density.

Since the cornerstone of Gern is the random transformation of
the input graph into a path graph based on effective resistance, it
is pertinent here to also cite GraphZoom [16]. GraphZoom intro-
duces a novel approach to analyze and mitigate this issue via effec-
tive resistance, seen as a measure of the “strength" of connections
between nodes in a graph. [16] proposes to use the total effective
resistance as a metric to quantify and limit over-squashing in GNNs.
In order to alleviate over-squashing, the authors develop an algo-
rithm for modifying input graphs so as the total effective resistance
is minimized. The study primarily focuses on node classification

tasks in GNNs, offering both theoretical insights and empirical evi-
dence. Effective resistance is also used in [39], where the authors
introduce effective resistance-based graph rewiring and sparsify-
ing preprocessing techniques which significantly mitigate issues
related to over-smoothing and over-squashing in large graphs, ex-
hibiting enhanced GNN performance across various benchmark
datasets.

Finally, the recent work [4] provides theoretical support that the
effective resistance can be used as a measure of over-squashing
between a pair of nodes, and the total effective resistance can then
be a measure of the total over-squashing in a graph. Consistent with
this framing, the paper studies how to improve the connectivity of
a graph through a rewiring based on total effective resistance, so as
to enhance the performance of GNNs for graph classification tasks.

B Further Background Material on

Graph-Linearization for Node Classification

In order to further illustrate the benefits of our graph-linearization
process, we next describe how this process has been successfully
used in sequential (but featureless) node classification problems.
The sequential node classification learning protocol for predicting
the labels on a labeled graph (𝐺,𝑦) can be defined as the following
repeated game between a (possibly randomized) learner and an ad-
versary. The game is parameterized by a graph 𝐺 = (𝑉 , 𝐸), whose
nodes do not host any feature information. Preliminarily, hidden to
the learner, the adversary chooses a labeling 𝑦 of the nodes of 𝐺 .
Then the nodes of𝐺 are presented to the learner one by one, accord-
ing to an arbitrary order of𝑉 , which can also be adaptively selected
by the adversary. More precisely, at each time step 𝑡 = 1, . . . , 𝑛, the
adversary chooses the next node 𝑖𝑡 in the permutation of 𝑉 , and
presents it to the learner for the prediction of the associated label
𝑦𝑖𝑡 . After the learner commits to a prediction, the ground-truth
label 𝑦𝑖𝑡 is disclosed to the learner, revealing whether a mistake
occurred. The learner’s goal is to minimize the total number of
prediction mistakes.

Below we briefly describe a couple of relevant results for this
setting, that exploit the power of randomization provided by RSTs.
We first mention a lower bound on the number of mistakes that
can be forced on any given graph and for any budget (upper bound)
on Φ𝑅 (𝐺,𝑦). Then we describe an sequential node classifier based
on RSTs, that achieves an upper bound on the number of mistakes
that matches the lower bound up to logarithmic factors in 𝑛. This
upper bound applies to any given input graph, any labeling, and any
adversarial node presentation order. The strength of these results
clearly lies in the universal quantifiers used for these statements.
Sequential node classification lower bound. The following
result is taken from [8].

Theorem 1. Let 𝐺 = (𝑉 , 𝐸) be any undirected and unweighted

graph, with 𝑛 = |𝑉 |. Then for all 𝐾 ≤ 𝑛 there exists a randomized

labeling 𝑦 of 𝐺 such that for all (deterministic or randomized) algo-

rithms 𝐴, the expected number of prediction mistakes made by 𝐴 in

the above sequential node classification game is at least 𝐾/2, while
Φ𝑅 (𝐺,𝑦) < 𝐾 .

The above statement implies that an (expected) number of mis-
takes of the form Φ𝑅 (𝐺,𝑦) (up to a factor of 2) can always be forced
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on any given graph for any labeling 𝑦 whose resistance-weighted
cut-size is Φ𝑅 (𝐺,𝑦), where the expectation is taken over an adver-
sarial randomized choice of the labeling 𝑦.
A RST-based sequential node classifier upper bound. The
method we describe below for exploiting RST for sequential node
classification is simple and fast, yet very powerful. The algorithm
consists of two parts. In the first part, we generate an RST 𝑇 of
𝐺 , and we create a path graph 𝑃 where the order of the nodes is
determined by any depth-first visit of𝑇 , starting from an arbitrarily
initial node. In the second part, we simply predict each node label𝑦𝑖
with𝑦 𝑗 , where 𝑗 is the closest node to 𝑖 in 𝑃 whose label has already
been revealed. This algorithm, called wta, enjoys the following
guarantees [8].

Theorem 2. Let 𝐺 = (𝑉 , 𝐸) be any undirected and unweighted

graph, with 𝑛 = |𝑉 |. The expected total number of mistakes𝑚(wta)
made by wta when run on a path graph 𝑃 generated starting from a

random spanning tree 𝑇 of 𝐺 satisfies

E [𝑚(wta)] = O
(
Φ𝑅 (𝐺,𝑦) log(𝑛)

)
,

the expectation being over the random draw of 𝑇 .

Althoughwta is able to obtain nearly optimal performance even
on weighted graphs, for the sake of simplicity, we focus here on
unweighted graphs only.

Moreover, it is worth emphasizing that standard reductions ex-
ist (e.g., [6]) that can turn such sequential prediction results into
corresponding generalization guarantees on the more standard
transductive train-test setting considered in this paper. Such re-
ductions roughly state that, with high probability over the random
draw of the training nodes, the test error of a train-test algorithm
derived from a sequential node classification algorithm operating
on a graph with 𝑛 nodes and making𝑚 prediction mistakes is up-
per bounded by O(𝑚/𝑛) when the train-test split is, say, 𝑛/2 − 𝑛/2.
Thus, for a train-test algorithm derived from wta, the test set error
rate is of the form

O
(
Φ𝑅 (𝐺,𝑦) log(𝑛)

𝑛

)
.

Though the above arguments apply to a featureless scenario, they
still contribute to motivating both our usage of resistance-weighted
cut-size measures and the RPG-based linearization techniques un-
derpinning Gern.

C Discussion on Over-squashing and

Over-smoothing

As briefly discussed in Section 4.4, the intrinsic sparsity of the
path graphs at the basis of Gern provides, as a very interesting
side-effect, the capability of greatly mitigating the effects of over-
squashing and over-smoothing. We now give further insights on
how Gern manages to avoid over-squashing and over-smoothing
during training.

First, Gern only operates on path graphs derived from RSTs
of 𝐺 , hence we simultaneously alleviate both issues. Because our
method aggregates at each node only information located 𝑘 hops
away (where 𝑘 is typically a small constant), and the degree of
each node on an RPG is at most 2, no bottleneck is likely to cause

over-squashing when trying to capture long-range interactions.
This is illustrated in Figure 2 (main body of the paper), where we
compare the message dynamics of a relatively dense graph to that
of a path graph.

For the very same reason, provided the RPG representation is
an accurate representation of the original graph𝐺 , our method is
likely to avoid the loss of discriminative power in node represen-
tations due to over-smoothing. This can be coarsely illustrated by
resorting to an analogy with the convergence properties of a ran-
dom walk (ergodic Markov Chain) to its stationary distribution. A
GNNs operates by iteratively applying a neighborhood aggregation
scheme, where each node’s representation is updated based on the
representations of its neighbors. When we consider a random walk
on a graph, each step moves from the current node to a randomly
chosen neighbor. The random walk transition matrix characterizes
the probabilities of these transitions. The process of information
propagation in GNNs is somewhat similar to a random walk on the
graph. Each layer in the GNN can be seen as a step in a randomwalk.
As more layers (i.e., steps in the random walk) are applied, the node
representations converge towards a homogeneous representation,
causing the nodes to lose their unique characteristics. This is akin to
the behavior of a random walk over many steps, where the current
location becomes increasingly independent of the starting location,
as the random walk tends towards its stationary distribution. This
applies specifically to undirected (and connected) graphs, where
the corresponding Markov chain is known to be ergodic. Figure 3
(main body of the paper) contains a simple illustration.

The GNN weights in Eq. (2) learned during the training process
define the transformations applied to the aggregate features from
neighboring nodes. These weights shape how node representations
evolve across layers of the GNN and, consequently, they have a wide
impact on over-smoothing. Theweights determine how information
is aggregated from neighboring nodes, which is conceptually similar
to the transitioning across nodes in a random walk. However, in a
simple random walk, the transition probabilities are fixed (typically
based on the graph’s structure), while in a GCN, the weight matrices
are learned.

One source of inspiration comes from [22], where the authors
view over-smoothing on a given graph topology as the result of
repeatedly applying a random walk transition matrix to a node
feature, which eventually leads to a stationary distribution, thus
washing away all feature information. A randomwalk on a path-like
graph will hardly approximate the stationary state if we constrain
the number of hops 𝑘 to be a small number. This may not be the
case if we operate on a graph with a smaller diameter.

Specifically, given a simple connected graph 𝐺 (𝑉 , 𝐸), with node
degrees 𝑑1, 𝑑2, . . . , 𝑑𝑛 , the random walk transition matrix (left nor-
malized adjacency matrix) is defined as 𝑃 := 𝐷−1𝐴, where 𝐴 is
the adjacency matrix of 𝐺 , and 𝐷 is a diagonal matrix such that
𝐷𝑖,𝑖 := 𝑑𝑖 . Let𝐺 ′ be the graph built from𝐺 by adding one self-loop
edge with weight 𝑑𝑖 for each edge 𝑖 ∈ 𝑉 . Note that𝐺 ′ can be view
as the graph used by Gernwhen aggregating the information on an
RPG (if we disregard the weight matrices which change over time),
since the self-loop weight is at most twice the weight of the other
edges in𝐺 . [22] builds on the standard spectral theory of Markov
Chains [14] (Eq. 1.14, p. 15), where the authors provide a lower
bound for the number of steps 𝑠 of an (ergodic) random walk on
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Table 5: Average accuracy and standard error for different methods applied to the Cora and PubMed datasets under various

training conditions. In cases marked with (*), we run only 10 repetitions instead of 100. In bold is the best performing method.

10 nodes per class 20 nodes per class 5% nodes 10% nodes

Cora Pubmed Cora Pubmed Cora Pubmed Cora Pubmed

GraphSAGE 76.39 ± 0.18 73.66 ± 0.30 79.72 ± 0.16 75.77 ± 0.20 77.75 ± 0.22 85.33 ± 0.05 82.86 ± 0.13 86.30 ± 0.04
GCN 78.11 ± 0.17 75.16 ± 0.31 80.88 ± 0.13 77.64 ± 0.19 80.85 ± 0.17 85.74 ± 0.04 83.91 ± 0.11 86.58 ± 0.03
GERN-SAGE 76.28 ± 0.22 74.13 ± 0.25 79.51 ± 0.15 76.66 ± 0.15 79.51 ± 0.17 85.56 ± 0.04 82.78 ± 0.13 87.03 ± 0.04
GERN-GCN 78.23 ± 0.18 75.94 ± 0.23 81.17 ± 0.13 78.48 ± 0.16 81.26 ± 0.17 85.84 ± 0.04 84.20 ± 0.12 86.53 ± 0.03

Table 6: Same as Table 5 with OGBN-ArXiv, AMiner-CS and OGBN-Products. For OGBN-Products, we always run 5 repetitions.

20 nodes per class 1% nodes

OGBN-arXiv AMiner-CS OGBN-Products OGBN-arXiv AMiner-CS OGBN-Products

GraphSAGE* 49.50 ± 0.51 48.72 ± 0.45 54.19 ± 0.58 62.36 ± 0.14 63.96 ± 0.08 85.31 ± 0.06
GCN* 53.55 ± 0.43 50.65 ± 0.50 55.24 ± 0.65 65.13 ± 0.11 64.48 ± 0.04 86.28 ± 0.02
GERN-SAGE 56.16 ± 0.45 52.01 ± 0.47 57.31 ± 1.30* 64.49 ± 0.14 62.88 ± 0.07 86.46 ± 0.03*
GERN-GCN 58.13 ± 0.11 54.21 ± 0.15 56.75 ± 0.52* 65.93 ± 0.03 63.03 ± 0.05 85.77 ± 0.03*

𝐺 ′ with any initial distribution 𝑓 : 𝑉 → R with
∑
𝑖 𝑓 (𝑖) = 1, such

that the Euclidean distance 𝜖 (𝑠) = ∥f𝑃𝑠 − 𝝅 ∥2 from the stationary
distribution 𝝅 is at most 𝜖 (𝑠). More precisely, they prove the bound

𝜖 (𝑠) ≤ max𝑖
√
𝑑𝑖

min𝑗
√︁
𝑑 𝑗

exp
(
−𝑠 𝜆1

2

)
,

where 𝜆1 is the smallest non-null eigenvalue of the symmetrically
normalized Laplacian matrix of 𝐺 . In the case of an RPG, we have
max𝑖

√
𝑑𝑖

min𝑗

√
𝑑 𝑗

= Θ(1), and 𝜆1 = 2 − 2 cos
(

𝜋
𝑛+1

)
= 2𝜋2

𝑛2 + O
(
1
𝑛2

)
, for

𝑛 → ∞. In order to have 𝜖 (𝑠) ≤ 𝜖 we then need to have 𝑠 =

Ω
(
2𝑛2

𝜋2 log
(√

2
𝜖

))
, that is, for any approximation level 𝜖 > 0, the

number of GNN layers has to be Ω(𝑛2).
Since in Gern, for each RPG, the GNN has only 𝑘 ≪ 𝑛 lay-

ers, this gives a good indication that, under the above-described
analogy with random walks, we largely mitigate over-smoothing
phenomena during training.

Furthermore, this aligns conceptually with the well-established
result that the mixing time of a path graph grows quadratically
with the number of nodes (see, e.g., [? ]).

D Further Experimental Results

This appendix details our additional experimental results. Table 7
provides results on Cora and Pubmed on train sets larger than
those shown in Table 2. Figure 6 contains relevant comparisons of
learning curves on both training and test set between GCN and
GERN-GCN. Table 9 contains the hyperparameter configurations
we used to achieve the results contained in Tables 2 and 3 in the
main body.

To compare with the competitors, the following choices have
been made. For Graph Coarsening, we fixed a coarsening ratio of
0.5 and adopted the Variational neighbours coarsening method. For
LADIES we took 10 batches at each iteration and set the batch size
to 64 for Cora and Pubmed, 512 for OGBN-arXiv and AMiner-CS,
and 4096 for OGBN-Products, following the original choices in [51]

for the batch sizes. In the case of LMC, we followed the hyperparam-
eters (the number of batches, batch size and scoring function) and
recommendations made in [40] and in the code repository, when
available.

The experiments were primarily executed utilizing two open-
source Python libraries: PyTorch [37] and PyTorch Geometric [19].
PyTorch was instrumental in automating the process of differen-
tiation, while PyTorch Geometric facilitated our work with graph
datasets.

Figure 6 shows the progress of train accuracy, test accuracy, train
loss and test loss when training different models using the OGBN-
arXiv dataset with a training set of 20 nodes per class. The models
have a fixed number of 256 hidden channels, and in each column we
show the progress of the models with increasing number of layers
(2,3,4 and 5). We compare the curves of two methods that are based
on the GCN architecture: GCN and GERN-GCN. In this specific
setting, the model that performs better is GERN-GCN with 5 layers
and 256 hidden channels (see Table 9). The best configuration for
GCN is 3 layers and 256 channels. It is clear that GCN suffers from
overfitting when the number of layers increases, while GERN-GCN
is less susceptible to overfitting at a higher number of layers. The
curves also show that even though GERN models take a higher
number of epochs than their counterparts to converge, this number
is not much higher, and considering that training steps with GERN
are almost an order of magnitude faster, the whole training process
is still much faster than their counterparts.

In addition to the average time per epoch, we also compare
the average time per training step of GCN and GERN-GCN when
varying the number of layers. Table 10 shows the average time
(in milliseconds) for a single training step using both GCN and
GERN-GCN on the OGBN-arXiv dataset, with a training set of 20
nodes per class. The trend reported here holds across different
datasets and conditions. As expected, execution time increases
when increasing the number of GNN layers.
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Table 7: Average accuracy and confidence intervals of the various methods under different training conditions for the two

datasets Cora and Pubmed.

# nodes Cora Pubmed Train Cora Pubmed
per class prop.

MLP

40

82.32 ± 0.12 79.61±0.11

20%

84.87 ± 0.14 86.99 ± 0.03
GraphSAINT 81.82 ± 0.28 80.83 ± 0.16 86.25 ± 0.36 87.07 ± 0.10
GraphSAGE 82.04 ± 0.10 78.40±0.14 85.44 ± 0.10 87.75 ± 0.03
Graph Coarsening 81.52 ± 0.16 78.67 ± 0.17 83.12 ± 0.16 86.54 ± 0.03
LADIES 81.65 ± 0.41 79.15 ± 0.25 84.16 ± 0.28 88.65 ± 0.11

LMC 81.60 ± 0.14 77.74 ± 0.12 82.33 ± 0.13 83.28 ± 0.04
GCN 83.23 ± 0.11 80.62 ± 0.11 86.06 ± 0.11 86.99 ± 0.03
GERN-GCN 83.49 ± 0.11 81.01 ± 0.09 86.33 ± 0.10 86.84 ± 0.03
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Figure 6: Learning curves, from first to last row: train accuracy, test accuracy, train loss, test loss. Red is GERN-GCN, green is

GCN. The number of hidden channels is set to 256. Curves are the average over 10 runs.

Table 8: Average cutsize for 100 RSTs and corresponding

RPGs for each dataset. The cutsize is measured with respect

to all the nodes in the graph.

RST RPG

Cora 482.7 ± 1.1 535.3 ± 5.4
PubMed 4098.9 ± 2.5 4484.9 ± 38.7
OGBN-arXiv 62466.5 ± 11.6 67578.6 ± 511.4
AMiner-CS 240022.8 ± 24.0 253227.1 ± 1320.7
OGBN-Products 402868.7 ± 42.6 445212.4 ± 4234.6

Applicability of Gern with other GNN architectures. As al-
ready discussed, Gern is versatile and can be integrated with vari-
ous GNN architectures. While our experiments primarily focused
on GCN, we conducted additional experiments with the Graph-
SAGE architecture.
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Figure 7: Over-smoothing and over-squashing metrics

against number of layers for GraphSAGE architectures on

the OGBN-arXiv datasets, as in the main text.

To investigate Gern’s impact across different GNN architectures,
we implement two variants that use RPGs as input: one based on
GCN (GERN-GCN), as discussed in the main text, and another
one based on GraphSAGE (GERN-SAGE). We also repeated the
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Table 9: Hyperparameter configurations (number of layers and number of hidden channels) used to achieve the accuracy scores

in Tables 2 and 3. The parameters that turned out to best for 20 nodes per class were used also for 10 and 40 nodes per class.

The parameters that turned out to be best for fractions of 10% and 1% were used also for the other fractions.

Cora PubMed OGBN-arXiv AMiner-CS OGBN-Products Cora PubMed OGBN-arXiv AMiner-CS OGBN-Products
20 nodes per class 10% 1%

MLP 3 - 128 4 - 128 3 - 256 3 - 256 3 - 256 4 - 256 2 - 128 2 - 256 3 - 256 2 - 256
GraphSAINT 3 - 256 4 - 256 4 - 256 3 - 32 2 - 64 2 - 16 2 - 64 3 - 256 4 - 64 2 - 256
GraphSAGE 3 - 256 4 - 256 4 - 256 3 - 32 4 - 64 2 - 16 2 - 64 3 - 256 4 - 64 2 - 256
Graph Coarsening 2 - 64 4 - 256 2 - 128 2 - 256 OOM 2 - 16 2 - 16 2 - 128 4 - 64 OOM
LADIES 4 - 128 4 - 128 3 - 256 3 - 256 3 - 256 4 - 128 2 - 256 2 - 256 3 - 256 3 - 256
LMC 2 - 256 2 - 256 3 - 256 2 - 256 2 - 64 2 - 256 2 - 256 3 - 256 3 - 256 2 - 256
GCN 3 - 128 2 - 256 3 - 256 3 - 64 3 - 256 2 - 256 2 - 64 2 - 128 4 - 64 3 - 256
GERN-GCN 3 - 128 2 - 256 5 - 256 3 - 64 4 - 256 2 - 256 2 - 128 3 - 256 4 - 64 3 - 256

Table 10: Average time (in milliseconds) at different number

of layers to perform a training step when fitting OGBN-arXiv

data with a training set of 20 nodes per class. The number of

hidden channels is 256.

GCN GERN-GCN

2 layers 48.02 ± 9.51 3.50 ± 6.05
3 layers 87.40 ± 10.73 5.04 ± 5.95
4 layers 126.71 ± 10.81 6.62 ± 5.98
5 layers 166.04 ± 10.69 8.45 ± 5.76

measurements of over-squashing and over-smoothing when using
this GNN architecture.

Tables 5 and 6 compare the performance of GERN-GCN and
GERN-SAGE against their respective baseline architectures, GCN
and GraphSage.

Figure 7 compares the over-smoothing and the over-squashing
measured when training aGraphSAGE for the OGBN-arXiv dataset.
These results indicate that, whereas GERN-SAGE does not always
outperform GERN-GCN, it is often competitive with GraphSage,
which implements the same GNN architecture. Moreover, the Gern
can reduce over-smoothing and over-squashing also on this archi-
tecture.

D.1 Ablation study

To further analyze the difference between RSTs and RPGs, we per-
formed an ablation study on the role of the linearization. First, we
show in Table 8 how the linearization we apply to the RSTs does
not cause a significant increase in the cutsize of the tree, which is
in line with the theoretical underpinning on the linearization of
RSTs we mentioned in Section 4.

We then considered the GCNs with the best set of parameters
when trained with GERN-GCN, i.e., with RPGs, and we repeated the
training process using RSTs instead. We performed the training for
100 repetitions. The results are contained in Table 11 (the results
of GERN-GCN are the same as those presented in Table 2 and
Table 3 in the main body of the paper). The performances on the
RPGs generally show an accuracy increase, with the exception of
PubMed at 10% and AMiner-CS at 1% of the dataset as training set.
In the first case the two results are compatible with one another,

while in the latter, the RSTs obtain a slightly better accuracy, in line
with the results on Table 3, that showed how GERN-GCN does not
perform better than training on the full graph. The above ablation
study did not include the OGBN-Products dataset.

E Experimental validation of A-RSTs

In our experiments, we generate 𝑧 RSTs (where 𝑧 is typically around
100) and linearize them to obtain 𝑧 RPGs as explained at the end of
Section 3. For the sake of efficiency, we adopt a fast hybrid method
of RST generation that we call Approximate RST (A-RST). An A-
RST is a spanning tree that is only an approximate version of a
uniformly generated RST.

There are two fundamental algorithmic methods to draw a uni-
formly generated RST. The first one is to include each edge (𝑖, 𝑗) of
a random walk passing from 𝑖 to 𝑗 whenever 𝑗 is has not been pre-
viously visited until 𝑛 − 1 edges have become part of the generated
tree. The second method is a faster and more sophisticated method
known as the Wilson algorithm [46], which generates an RST by
iteratively performing random walks from unvisited nodes selected
uniformly at random, deleting loops, and adding the resulting path
to the tree3. Since the computational bottleneck is the last part for
the random walk method and the first part in the Wilson algorithm,
we combine the two methods as follows. We first run the random
walk method until 𝛽𝑛 edges are traversed, for some constant 𝛽 < 1,
and then switch to the Wilson algorithm. Below we experimentally
verify that the probability of including each edge in an A-RST so
generated is close to the one achieved by a uniform RST.

We compared different ways of generating (random) spanning
trees. We used the standard Wilson algorithm [46] (the resulting
trees will simply be called RST), our A-RST method from Section 4
in the main body, and a third randomized method based on Breadth-
First Search (BFS), where the root is selected at random and the
neighbors of nodes are visited in random order. For eachmethod, we
generated 𝑁 spanning trees, where 𝑁 = 1000 for Cora and Pubmed,
and 𝑁 = 500 for OGBN-arXiv and AMiner-CS. Next, we calculated
the probabilities and associated standard error for each edge in 𝐸.
Then we calculated the absolute differences between the probability

3These methods are known to be fast for a broad class of graphs. For instance, Table 1
in [2] reports the cover time, which corresponds to the expected runtime of the first
method. Moreover, Wilson’s algorithm is never more than a factor of 2 slower and is
often faster [46]
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Table 11: Test set performance (accuracy) of the same GCN model when trained over the RSTs and over the RPGs. We tested

with both constant number of nodes per class (20) and train proportions. For Cora and Pubmed, the training proportion is 10%,
for OGBN-arXiv and AMiner-CS it is 1%.

Cora PubMed OGBN-arXiv AMiner-CS

20 nodes per class RST 80.76 ± 0.15 77.91 ± 0.19 56.81 ± 0.13 53.84 ± 0.14
GERN-GCN 81.17 ± 0.13 78.48 ± 0.16 58.13 ± 0.11 54.21 ± 0.15

10% - 1% train prop RST 83.97 ± 0.12 86.54 ± 0.03 65.64 ± 0.04 63.28 ± 0.02
GERN-GCN 84.20 ± 0.12 86.53 ± 0.03 65.93 ± 0.03 63.03 ± 0.05

Table 12: Average of the absolute differences between the probability of including each edge with A-RST and RST, and between

BFS and RST.

Cora PubMed OGBN-arXiv AMiner-CS

A-RST vs. RST 0.0153 ± 0.0130 0.0116 ± 0.0088 0.0142 ± 0.0082 0.0170 ± 0.0111
BFS vs. RST 0.1232 ± 0.0123 0.0574 ± 0.0086 0.0472 ± 0.0079 0.0571 ± 0.0108

Table 13: Kolmogorov-Smirnov test of the equality of distributions between the probability value histograms of A-RST vs. RST,

and with BFS vs. RST. In brackets we report the p-value of each test.

Cora PubMed OGBN-arXiv AMiner-CS

A-RST vs. RST 0.008 (0.87) 0.002 (0.97) 0.0005 (0.95) 0.002 (0.97)
BFS vs. RST 0.1 (< 10−8) 0.043 (< 10−8) 0.091 (< 10−8) 0.076 (< 10−8)
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Figure 8: Histograms with the relative frequency of probability values assigned to edges in the OGBN-arXiv dataset using three

different spanning tree generation methods.

of including each edge with A-RST and RST, and between BFS and
RST. Table 12 shows the average of the absolute differences across
all edges in 𝐸. It shows that the average probability difference is
close to 1% for A-RST, while the difference when using BFS varies
for each dataset, and is more than three times larger in OGBN-
arXiv and AMiner-CS. For Cora and PubMed, BFS produces closer
probabilities due to their sparsity. Furthermore, the fraction of edges
that are not included neither in the A-RSTs nor in the RSTs is in
the order of 10−4, which is a good indicator that 𝑁 is chosen large
enough to measure how good an A-RST approximates an RST.

Figure 8 displays histograms indicating the frequency of proba-
bility values across all edges in the OGBN-arXiv dataset, derived
from RST, A-RST, and BFS methods. Each histogram represents
the normalized frequency of edges with their probability of being
included in the 500 spanning trees generated via each respective

method. A difference can be observed between the histograms from
RST and BFS, but RST and A-RST appear quite similar visually. To
support this observation, we carried out a Kolmogorov-Smirnov test
to evaluate the equality of distributions, comparing the histograms
for all datasets (results displayed in Table 13). When comparing the
histograms from RST and A-RST, the high p-values suggest that
we cannot exclude that the values are drawn from the same distri-
bution. On the other hand, the comparison between RST and BFS
histograms yields small p-values, indicating a significant likelihood
that the samples are drawn from different distributions.
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