
Predicting the Labels of an Unknown Graph

via Adaptive Exploration

Nicolò Cesa-Bianchi

Dipartimento di Scienze dell’Informazione

Università degli Studi di Milano, Italy

Claudio Gentile

Dipartimento di Informatica e Comunicazione

Università dell’Insubria, Varese, Italy

Fabio Vitale∗

Dipartimento di Scienze dell’Informazione
Università degli Studi di Milano, Italy

Abstract

Motivated by a problem of targeted advertising in social networks, we intro-
duce a new model of online learning on labeled graphs where the graph is
initially unknown and the algorithm is free to choose which vertex to predict
next. For this learning model, we define an appropriate measure of regular-
ity of a graph labeling called the merging degree. In general, the merging
degree is small when the vertices of the unknown graph can be partitioned
into a few well-separated clusters within which labels are roughly constant.
For the special case of binary labeled graphs, the merging degree is a more
refined measure than the cutsize. After observing that natural nonadaptive
exploration/prediction strategies, like depth-first with majority vote, do not
behave satisfactorily on graphs with small merging degree, we introduce an
efficiently implementable adaptive strategy whose cumulative loss is provably
controlled by the merging degree. A matching lower bound shows that in the

∗Corresponding author
Email addresses: nicolo.cesa-bianchi@unimi.it (Nicolò Cesa-Bianchi),

claudio.gentile@uninsubria.it (Claudio Gentile), fabio.vitale@unimi.it (Fabio
Vitale)

Preprint submitted to Theoretical Computer Science August 24, 2010

case of binary labels our analysis cannot be improved.

Keywords: online learning, graph prediction, graph clustering

1. Introduction

The study of online (game-theoretic) pattern recognition has traditionally
focused on algorithms for learning linear functions defined on vector spaces.
Many algorithms have been devised in this context, perhaps the most popular
being the classical Perceptron algorithm. In recent years, there has been
a growing interest in online learning problems where instances come from
domains that are not easily structured as a linear space. The papers [6, 10,
11, 12, 13, 14, 15] investigate the problem of predicting in an online fashion
the binary labels of vertices of an undirected graph. The learning model
these authors formulate is ”transductive” in nature, in the sense that the
graph is assumed to be known, and the task is to sequentially predict the
labels of an adversarially chosen permutation of the vertices.

In this paper we drop the transductive assumption and study the graph
prediction problem from a purely sequential standpoint, where the vertices
(and their incident edges) of an unknown graph are progressively revealed
to the learner in an online fashion. As soon as a new vertex is revealed, the
learner is required to predict its label. Before the next vertex is observed,
the true label of the new vertex is fed back to the learner.

In order to allow the learner to actively explore the graph in directions
that are judged easier to predict, we assume the underlying graph is con-
nected, and force each newly revealed vertex to be adjacent to some vertex
dynamically chosen by the learner in the subgraph so far observed.

More formally (see Section 2 for a complete description the protocol):
at each time step t = 1, 2, . . . , the learner selects a known node qt having
unexplored edges, receives a new vertex it adjacent to qt, and is required to
output a prediction ŷt for the (unknown) label yt associated with it. Then yt is
revealed, and the algorithm incurs a loss !(ŷt, yt) measuring the discrepancy
between prediction and true label. Our basic measure of performance is
the learner’s cumulative loss !(ŷ1, y1) + · · · + !(ŷn, yn), over a sequence of n
predictions.

As a motivating application for this exploration/prediction protocol, con-
sider the advertising problem of targeting each member of a social network
(where ties between individuals indicate a certain degree of similarity in tastes

2

and interests) with the product he/she is most likely to buy. Suppose, for
the sake of simplicity, that the network and the preferences of network mem-
bers are initially unknown, apart from those of a single “seed member”. It is
reasonable to assume the existence of a mechanism that allows exploration
of the social network by revealing new members connected (i.e., with sim-
ilar interests) to members that are already known. This mechanism could
be implemented in different ways, e.g., by providing incentives or rewards
to members with unrevealed connections. Alternatively, if the network is
hosted by a social network service (like FacebookTM), the service provider
itself may release the needed pieces of information. Since each discovery of a
new network member is presumably costly, the goal of the marketing strategy
is to minimize the number of new members not being offered their preferred
product.

This social network advertising task can be naturally cast in our explo-
ration/prediction protocol: at each step t, find the member qt, among those
whose preferred product yt we already know, who is most likely to have
undiscovered connections it with the same preferred product as qt.

In order to leverage on the assumption that connected members tend to
prefer the same products (see [22]), we design a learning/exploration strategy
that perform well to the extent that the underlying graph labeling y =
(y1, . . . , yn) is regular in the following sense: The graph can be partitioned
into a small number of weakly interconnected clusters (subgroups of network
members) such that labels in each cluster are all roughly similar.

In the case of binary labels and zero-one loss, a common measure of label
regularity for an n-vertex graph G with labels y = (y1, . . . , yn) ∈ {−1, +1}n

is the cutsize ΦG(y). This is the number of edges (i, j) in G whose endpoints
vertices have disagreeing labels, yi #= yj. The cumulative loss bound we prove
in this paper holds for general (real-valued) labels, and is expressed in terms
of a measure of regularity we call merging degree. The merging degree of
a labeled graph G is inherently related to the degree of interaction among
the clusters which G can be partitioned into. In the special case of binary
labels, this measure is often significantly smaller than the cutsize ΦG(y), and
never larger than 2ΦG(y). Furthermore, unlike ΦG(y), which may even be
quadratic in the number of nodes, the merging degree is never larger than n,
implying that our bound is never vacuous.

The main results of this paper are the following. We prove that, for
every binary-labeled graph G, the number of mistakes made on G by our
learning/exploration algorithm is at most equal to the merging degree of

3

G (Theorem 1). As a complementary result, we also show that, on any
connected graph it is possible to force any algorithm to make a number of
mistakes equal to half the merging degree (Theorem 2). We generalize the
upper bound result by giving a cumulative loss bound holding for any loss
function (Theorem 3). Finally, we show that our algorithm has small time
and space requirements, which makes it suitable to large scale applications.

The paper is organized as follows. In the next subsection we briefly
overview some related work. The exploration/prediction protocol is intro-
duced in Section 2. We define our measure of graph regularity in Section 3.
In Section 4 we point out the weakness of some obvious exploration strate-
gies (such as depth-first or breadth-first) and describe our algorithm, which
is analyzed in Section 5. In Section 6 we describe time and space efficient
implementations of our algorithm. We conclude in Section 7 with some com-
ments and a few open questions.

1.1. Related work

Online prediction of labeled graphs has often been studied in a “transduc-
tive” learning model different from the one studied here. In the transductive
model the graph G (without labels) is known in advance, and the task is to se-
quentially predict the unknown labels of an adversarially chosen permutation
of G’s vertices. A technique proposed in [10] for transductive binary predic-
tion is to embed the graph into a linear space using the kernel defined by the
Laplacian pseudoinverse —see [17, 21], and then run the standard (kernel)
Perceptron algorithm for predicting the vertex labels. This approach guar-
antees that the number of mistakes is bounded by a quantity that depends
linearly on the cutsize ΦG(y). Further results involving the prediction of node
labels in graphs with known structure include [3, 4, 6, 9, 11, 12, 13, 14, 16, 18].
Since all these papers assume knowledge of the entire graph in advance, the
techniques proposed for transductive binary prediction do not have any mech-
anism for guiding the exploration of the graph, hence they do not work well
on the exploration/prediction problem studied in this work.

On the other hand, our exploration/prediction model bears some similar-
ities to the graph exploration problem introduced in [8], where the measure
of performance is the overall number edge traversals sufficient to ensure that
each edge has been traversed at least once. Unlike that approach, we do not
charge any cost for visits of the same node beyond the first visit. Moreover,
in our setting depth-first exploration performs badly on simple graphs with

4

binary labels (see discussion in Section 2), whereas depth-first traversal is
optimal in the setting of [8] for any undirected graph —see [1].

As explained in Section 4, our strategy works by incrementally build-
ing a spanning tree whose total cost is equal to the algorithm’s cumulative
loss. The problem of constructing a minimum spanning tree online is also
considered in [20], although only for graphs with random edge costs.

2. The exploration/prediction protocol

Let G = (V, E) be an unknown undirected and connected graph with ver-
tex set V = {1, 2, . . . , n} and edge set E ⊆ V ×V . We use y = (y1, . . . , yn) ∈
Yn to denote an unknown assignment of labels yi ∈ Y to the vertices i ∈ V ,
where Y is a given label space, e.g., Y = R or Y = {−1, +1}.

We consider the following protocol between a graph exploration/prediction
algorithm and an adversary. Initially, the algorithm receives an arbitrary
vertex i0 ∈ V and its corresponding label y0. For all subsequent steps
t = 1, . . . , n − 1, let Vt−1 ⊆ V be the set of vertices visited in the first
t − 1 steps, where we conventionally set V0 = {i0}. We assume that the
algorithm is told which nodes of Vt−1 have unexplored neighbors; i.e., which
nodes of Vt−1 are adjacent to nodes in V \ Vt−1. Then:

1. The algorithm chooses a node qt ∈ Vt−1 among those with unexplored
neighbors.

2. The adversary chooses a node it ∈ V \ Vt−1 adjacent to qt;
3. All edges (it, j) ∈ E connecting it to previously visited vertices j ∈ Vt−1

are revealed, including edge (qt, it);
4. The algorithm predicts the label yt of it with ŷt ∈ Y ;

5. The label yt is revealed and the algorithm incurs a loss.

At each step t = 1, . . . , n − 1, the loss of the algorithm is !(ŷt, yt), where
! : Y × Y → R+ is a fixed and known function measuring the discrepancy
between ŷt and yt. For example, if Y = R, then we may set !(ŷt, yt) =
|ŷt − yt|. The algorithm’s goal is to minimize its cumulative loss !(ŷ1, y1) +
· · · + !(ŷn, yn). Note that the edges (qt, it), for t = 1, . . . , n − 1, form a
spanning tree for G. This is key to understanding the way our algorithm
works —see Section 4.

5

5.4

5.2

5.6

5.1 0.1

0.7

0.9

2.9

3.1
3.8

3.9

3.2 3.6

3.5

4.0

5.4

5.2

5.6

5.1

d = 2.0
d = 0.4

0.1

0.7

0.9

d = 2.9
d = 0.8

2.9

3.1
3.8

3.9

3.2 3.6

3.5

4.0
d = 2.0
d = 0.8

Figure 1: Two copies of a graph with real labels yi associated with each vertex i. On the
left, a shortest path connecting the two nodes enclosed in double circles is shown. The
path length is maxt !(sk−1, sk), where !(i, j) = |yi − yj |. The thick black edge is incident
to the nodes achieving the max in the path length expression. On the right, the vertices of
the same graph have been clustered to form a regular partition. The diameter of a cluster
C (the maximum of the pairwise distances between nodes of C) is denoted by d. Similarly,
d denotes the minimum of the pairwise distances (i, j), where i ∈ C and j ∈ V \ C. Note
that each d is determined by the thick black edge connecting the cluster to the rest of
the graph, while d is determined by the two nodes incident to the thick gray edge. The
partition is regular, hence d < d holds for each cluster. Also, the three subgraphs induced
by the clusters are connected.

3. Regular partitions and the merging degree

We are interested in designing exploration/prediction strategies that work
well to the extent that the underlying graph G can be partitioned into a small
number of weakly connected regions (the “clusters”) such that labels on the
vertices in each cluster are similar. Before defining this property formally,
we need a few key auxiliary definitions.

Given a path s1, . . . , sd in G, a notion of path length λ(s1, . . . , sd) can
be defined which is naturally related to the prediction loss. A reasonable
choice might be λ(s1, . . . , sd) = maxk=2,...,d !(sk−1, sk), where we conven-
tionally write !(st−1, st) instead of !(yst−1, yst) when the labeling is under-
stood from the context. Note that, in the binary classification case, when
Y = {−1, +1} and !(ŷ, y) = I{by #=y} (zero-one loss), if the labels of nodes
s1, . . . , sd are either all positive or all negative, then λ(s1, . . . , sd) = 0, oth-
erwise λ(s1, . . . , sd) = 1.

6

In general, we say that λ is a path length assignment if it satisfies

λ(s1, . . . , sd−1, sd) ≥ λ(s1, . . . , sd−1) ≥ 0 (1)

for each path s1, . . . , sd−1, sd in G. As we see in Section 6, condition (1) helps
in designing efficient algorithms.

Given a path length assignment λ, denote by Pt(i, j) the set of all paths
connecting node i to node j in Gt = (Vt, Et), the subgraph containing all
nodes Vt and edges Et that have been observed during the first t steps. The
distance dt(i, j) between i and j is the length of the shortest path between i
and j in Gt,

dt(i, j) = min
π∈Pt(i,j)

λ(π) .

We assume the path length λ(π) is 0 if π consists of one node only, (i.e.,
π = s1), which implies d(i, i) = 0 for all d.

A partition P of V in subsets C is regular if, for all C ∈ P and for all
i ∈ C,

max
j∈C

d(i, j) < min
k #∈C

d(i, k)

where d(i, j), without subscript, denotes the length of the shortest path be-
tween i and j in the whole graph G. See Figure 1 for an example.

We call cluster each element of a regular partition. Note that in a regular
partition each node is closer to every node in its cluster than to any other
node outside. When −d(·, ·) is taken as similarity function, our notion of
regular partition becomes equivalent to the Apresjan clusters in [5] and to
the strict separation property of [2].

It is easy to see that, because of (1), all subgraphs induced by the clusters
on a regular partition are connected graphs. This simple fact is key to the
proof of Lemma 1 in Section 5.

Note that every labeled graph G = (V, E) has at least two regular par-
titions, since both P = {V } and P =

{
{1}, {2}, . . . , {|V |}

}
are regular.

Moreover, as depicted in Figure 2, if labels are binary then the notion of
regular partition includes the (natural) partition made up of the smallest
number of clusters C, each one including only nodes with the same label.

Now, for any given subset C ⊆ V , define the inner border ∂C of C to
be the set of all nodes i ∈ C that are adjacent to any node j #∈ C. The outer
border ∂C of C is the set of all nodes j #∈ C that are adjacent to at least
one node in the inner border of C. See Figure 3 for an example.

7

−

−

−

− −

−

−

+

+
+

+

+ +

+

+

Figure 2: A (natural) regular partition for a graph with labels in {−1, +1}. The path
length is measured as maxk !(sk−1, sk), where !(i, j) = |yi − yj|. The diameter of each
cluster C (the maximum of the pairwise distances between nodes of C) is equal to 0,
whereas the minimum of the pairwise distances (i, j), where i ∈ C and j ∈ V \C, is equal
to 2.

C

Figure 3: The inner border of the depicted subset C is the set of dark grey nodes, the
outer border is made up of the light grey nodes, hence |∂C| = 3 and |∂C| = 5.

Given the above, we are ready to introduce our measure of graph la-
bel regularity, which will be tightly related to the predictive ability of our
algorithm.

Given a regular partition P of the vertices V of an undirected, connected
and labeled graph G = (V, E), for each C ∈ P the merging degree δ(C) of
cluster C is defined as

δ(C) = min
{
|∂C|, |∂C|

}
.

The overall merging degree of the partition, denoted by δ(P) is given by

δ(P) =
∑

C∈C

δ(C) .

8

Figure 4: A relatively dense graph G (repeated twice) with two clusters C1 and C2 (left-
hand side, from top to bottom), or three clusters C1, C2, and C3 (right-hand side, from top
to bottom), depending on the label of the black node at the bottom. If negative, this label
might naturally be viewed as a noisy label. When we flip the label of the black node from
positive to negative, the cutsize increases (as it is often the case in dense graphs) whereas
the merging degree remains small. In particular, for the graph on the left ΦG(y) = 14
and δ(P) = δ(C1) + δ(C2) = 5 + 5 = 10, while for the graph on the right ΦG(y) = 25 and
δ(P) = δ(C1)+ δ(C2)+ δ(C3) = 5+6+1 = 12. Note that the black node in the left graph
satisfies the assumptions of Fact 1, while the square node in cluster C1 does not. Indeed,
flipping this square node might cause δ(P) to change significantly, whereas, in this case,
ΦG(y) would remain unchanged.

The merging degree δ(C) of a cluster C ∈ P quantifies the amount of inter-
action between C and the remaining clusters in P.

In the binary case, it is not difficult to compare the merging degree of a
partition to the graph custsize. Since at least one edge contributing to the
cutsize ΦG(y) must be incident to each node in an inner or outer border of a
cluster, δ(P) is never larger than 2ΦG(y). On the other hand, as suggested
for example by Figure 4, δ(P) is often much smaller ΦG(y). This is directly
implied by the two basic differences between merging degree and cutsize: (i)
The merging degree counts subsets of nodes, and thus δ(P) is never larger
than n; on the contrary, the cutsize counts subsets of edges, and thus on
dense graphs ΦG(y) can even be quadratic in n. (ii) The merging degree of
a cluster is the minimum between two quantities (the cardinalities of inner
and outer borders) related to the interaction among clusters. Hence, even
on sparse graphs (where ΦG(y) is close to the total number of border nodes

9

of G), the merging degree can take advantage of clusters having unbalanced
borders.

More importantly, as hinted again by Figure 4, δ(P) is typically more
robust to label noise than ΦG(y). For instance, if we flip the label of the
black node, the merging degree of the depicted partition gets affected only
by a small amount, whereas the cutsize can increase in a significant way. A
more detailed study of the robustness of merging degree and cutsize against
label flipping follows.

Let i be the node whose label yi has been flipped. We write δ(P, y)
to emphasize the dependence of the merging degree on the labeling y ∈
{−1, +1}n. Let yold be the labeling before the flip of yi and ynew be the one
after the flip. The following statement is easily verified. It provides sufficient
conditions to insure that, after the label flip, δ(P, y) cannot change by more
than 2.

Fact 1. Given a graph G = (V, E) with labeling y ∈ {−1, +1}n and a node
i ∈ V , denote by Gi ⊆ G the maximal connected subgraph containing i and
made up of nodes labeled as yi (so that Vi ⊆ V is the cluster containing node
i). If i is neither a border node of the cluster nor an articulation node1 of
Gi, then

∣∣δ(P, ynew) − δ(P, yold)
∣∣ ≤ 2 while

∣∣ΦG(ynew) − ΦG(yold)
∣∣ is always

equal to the degree of i.

See again Figure 4 for an illustration of the above statement.
A couple of observations are in order. First, when G is a dense graph it

is fairly unlikely that a node exists which is an articulation node for its own
cluster. In addition, since the most part of nodes in a real graph are not
border nodes for any cluster, we tend to consider the case of the black node
shown in Figure 4 as the most common situation. Second, the two conditions
on node i contained in Fact 1 are sufficient in order for the statement to hold,
but are not necessary. As a matter of fact, there are important classes of
labeled graphs (even sparse ones) where Fact 1 need not apply, still something
interesting could be said about δ(P, y) as compared to ΦG(y). For example,
if G is a labeled tree, then all vertices i that are not border nodes for any
cluster are articulation nodes for the clusters which they belong to. In such

1Recall that an articulation node of a connected graph is a node whose removal dis-
connects the graph.

10

Figure 5: A binary labeled graph with three clusters such that δ(P) = 4 and ΦG(y) =
8. We show that depthFirst makes order of ΦG(y) mistakes. Arrow edges indicate
predictions, and numbers on such edges denote the adversarial order of presentation. For
instance edge 3 (connecting a −1 node to a +1 node) indicates that depthFirst uses
the −1 label associated with the start node (the current qt node) to predict the +1 label
associated with the end node (the current it node). Dark grey nodes are the mistaken
nodes (in this figure ties are mistakes). Note that in the dotted area we could add as many
(mistaken) nodes as we like, thus making the graph cutsize ΦG(y) arbitrarily close to |V |
without increasing δ(P). These nodes would still be mistaken if depthFirst predicted
yt through a majority vote among previously observed adjacent nodes, and they would
remain mistaken if this majority vote were only restricted to previously mistaken adjacent
nodes. This is because depthFirst is forced to err on the left-most node of the right-most
cluster.

cases, it is straightforward to verify that
∣∣δ(P, ynew) − δ(P, yold)

∣∣ ≤
∣∣ΦG(ynew) − ΦG(yold)

∣∣ + 1 .

That is, a high variation in merging degree must correspond to a similar (or
higher) variation in the cutsize.

The merging degree δ(P) is used to bound the total loss of our algorithm,
which is described in the following section.

4. Adaptive vs. nonadaptive strategies and the Clustered Graph
Algorithm

Before describing our algorithm, we would like to stress that in our explo-
ration/prediction protocol, standard nonadaptive graph exploration strate-
gies (combined with simple prediction rules) are suboptimal, meaning that
their cumulative loss is not controlled by the merging degree. To this end,
consider the strategy depthFirst, performing a depth-first visit of G (par-
tially driven by the adversarial choice of it) and predicting the label of it

11

through the adjacent node qt in the spanning tree generated by the visit. In
the binary classification case with zero-one loss, the graph cutsize ΦG(y) is
an obvious mistake bound achieved by such a strategy. Figure 5 shows an
example where δ(P) = O(1) while depthFirst makes ΦG(y) = Ω(|V |) mis-
takes. This high number of mistakes is not due to the choice of the prediction
rule. Indeed, the same large number of mistakes is achieved by variants of
depthFirst where the predicted label is determined by the majority vote
of all labels (or just of the mistaken ones) among the adjacent nodes seen so
far.

Another algorithm which we may consider is the so-called graphtron

algorithm [19] for binary classification. This algorithm predicts at time t
just with the majority vote of the labels of previously mistaken nodes that
are adjacent to it. The number of mistakes satisfies |EM| ≤ 2ΦG(y), where
EM ⊆ E are all edges of G whose endpoints are both mistaken points. As a
matter of fact, graphtron has been designed for a harder protocol where
the adversary is not restricted to choose it adjacent to a previously observed
node qt. The example in Figure 5 shows that, even in our easier protocol,
this algorithm makes order of ΦG(y) mistakes. This holds even when the
graph labeling is consistent with the majority vote predictor based on the
entire graph.

Similar examples can be constructed to show that visiting the graph in
breadth-first order can still cause Ω(|V |) mistakes.

These algorithms fail mainly because their exploration strategy is obliv-
ious to the sequence of revealed labels. In fact, an adaptive exploration
strategy taking advantage of the revealed structure of the labeled graph can
make a substantially smaller number of mistakes under our cluster regular-
ity assumptions. Our algorithm, called cga (Clustered Graph Algorithm),
learns the next “good” node qt ∈ Vt−1 to explore, and is able to take advan-
tage of regular partitions. As we show in Section 5, the cumulative loss of
cga can be expressed in terms of the best regular partition of G with respect
to the unknown labeling y ∈ Rn, i.e., the partition having minimum merging
degree.

At each time step t, cga sets ŷt to be the (known) label yqt of the selected
vertex qt ∈ Vt−1. Hence, the algorithm’s cumulative loss is the cost of the
spanning tree with edges

{
(qt, it) : t = 1, . . . , |V | − 1

}
where edge (qt, it)

has cost !(i, j) = !(yi, yj). The key to controlling this cost, however, is the
specific rule the algorithm uses to select the next qt based on Gt−1. The
approach we propose is simple. If there exists a regular partition of G with

12

few elements, then it does not really matter how the spanning tree is built
within each element, since the cost of all these different trees will be small
anyway. What matters the most is the cost of the edges of the spanning tree
that join two distinct elements of the partition. In order to keep this cost
small, our algorithm learns to select qt so as to avoid going back to the same
region many times. More precisely, at each time t, cga selects and predicts
the label of a node adjacent to the node in the inner border of Vt−1 which is
closest to the previously predicted node it−1. Formally,

ŷt = yqt where qt = argmin
q∈∂V t−1

dt−1(it−1, q) . (2)

We say that cluster C is exhausted at time t if at time t the algorithm
has already selected all nodes in C together with its outer border, i.e., if
C ∪ ∂C ⊆ Vt. In the special but important case when labels are binary and
the path length is λ(s1, . . . , sd) = maxk !(sk−1, sk) (being ! the zero-one loss),
the choice of node qt in (2) can be defined as follows: If the cluster C where
it−1 lies is not exhausted at the beginning of time t, then cga picks any node
qt connected to it−1 by a path all contained in Vt−1 ∩C. On the other hand,
if C is exhausted, cga chooses an arbitrary node in Vt−1.

Figure 6 contains a pictorial explaination of the behavior of cga, as com-
pared to depthFirst on the same binary labeled graph as in Figure 5. As
we argue in the next section (Lemma 1 in Section 5), a key property of cga

is that when choosing qt causes the algorithm to move out of a cluster of a
regular partition, then the cluster must have been exhausted. This suggests
a fundamental difference between cga and simple algorithms like depth-

First. Evidence of that is provided by comparing Figure 5 to Figure 6.
cga is seen to make a constant number of binary prediction mistakes on
simple graphs where depthFirst makes order of |V | mistakes. In this fig-
ure, the leftmost cluster has merging degree 1, the middle one has merging
degree 2, and the rightmost one has merging degree 1. Hence this figure
shows a case in which the mistake bound of our algorithm is tight (see Sec-
tion 5). Note that the middle cluster has merging degree 2 no matter how we
increase the number of negatively labeled nodes in the dotted area (together
with the corresponding outbound edges).

5. Analysis

This section contains the analysis of cga’s predictive performance. The
computational complexity analysis is contained in Section 6. For the sake

13

Figure 6: The behavior of cga displayed on the binary labeled graph of Figure 5. The
length of a path s1, . . . , sd is measured by maxk !(sk−1, sk) and the loss is the zero-one
loss. The pictorial conventions are as in Figure 5. As in that figure, the cutsize ΦG(y) of
this graph can be made as close to |V | as we like, still cga makes δ(P) = 4 mistakes. For
the sake of comparison, recall that the various versions of depthFirst can be forced to
err ΦG(y) times on this graph.

of presentation, we treat the binary classification case first, since it is an
important special case of our setting.

Fix an undirected and connected graph G = (V, E). The following lemma
is a key property of our algorithm.

Lemma 1. Assume cga is run on a graph G with labeling y ∈ Yn, and
pick any time step t > 0. Let P be a regular partition and assume it−1 ∈ C,
where C is any cluster in P. Then C is exhausted at time t − 1 if and only
if qt #∈ C.

Proof. First, assume C is exhausted at time t − 1, i.e., C ∪ ∂C ⊆ Vt−1.
Then all nodes in C have been visited, and no node in C has unexplored
edges. This implies C ∩ ∂V t−1 ≡ ∅ and that the selection rule (2) makes the
algorithm pick qt outside of C. Assume now qt #∈ C. Since each cluster is a
connected subgraph, if the labels are binary the prediction rule ensures that
cluster C is exhausted. In the general case (when labels are not binary) we
can prove by contradiction that C is exhausted by analyzing the following
two cases (see Figure 7).
Case 1. There exists j ∈ C \ Vt−1. Since the subgraph in cluster C is
connected, there is a path in C connecting it−1 to j such that at least one
node q′ ∈ C on this path: (a) has unexplored edges, and (b) belongs to Vt−1,
(i.e., q′ ∈ ∂V t−1), and (c) is connected to it−1 by a path all contained in

14

Figure 7: Two clusters corresponding to the two cases mentioned in the proof of Lemma 1.
In both clusters the dark shaded area is C ∩ Vt−1 (i.e., the set of nodes in cluster C that
have already been explored) and the white area is C \ Vt−1. Case 1 (left cluster): A node
j in C exists which has not been explored yet. Then there is a node q′ on the inner border
of Vt−1, along a path connecting it−1 to j so as the path from it−1 to q′ is all contained
in C ∩ Vt−1. Case 2 (right cluster): A node j in the outer border of C exists which has
not been explored yet. Then there is a node in the inner border of C which is connected
to it−1 so that we can single out a further node q′ with the same properties as in Case 1.

C ∩ Vt−1. Since the partition is regular, q′ is closer to it−1 than to any node
outside of C. Hence, by construction —see (2), the algorithm would choose
this q′ instead of qt (due to (c) above), thereby leading to a contradiction.
Case 2. There exists j ∈ ∂C \ Vt−1. Again, since the subgraph in cluster C
is connected, there is a path in C connecting it−1 to a node in ∂C adjacent to
j. Then we fall back into the previous case since at least one node q′ on this
path: (a) has unexplored edges, and (b) belongs to Vt−1, and (c) is connected
to it−1 by a path all contained in C ∩ Vt−1. !

We begin to analyze the special case of binary labels and zero-one loss.

Theorem 1. If cga is run on an undirected and connected graph G with
binary labels then the total number m of mistakes satisfies

m ≤ δ(P)

where P is the smallest partition P of V whose each cluster only includes
nodes having the same label. 2

2Recall that such a P is a regular partition of V . Moreover, one can show that for this
partition the bound in the theorem is never vacuous.

15

The key idea to the proof of this theorem is the following. Fix a cluster
C ∈ P. In each time step t when both qt and it belong to C a mistake
never occurs. The remaining time steps are of two kinds only: (1) Incoming
lossy steps, where node it belongs to the inner border of C; (2) outgoing
lossy steps, where it belongs to the outer border of C. With each such step
we can thus uniquely associate a node it in either (inner or outer) border of
C. The overall loss involving C, however, is typically much smaller than the
sum of border cardinalities. Consider all the incoming and outgoing lossy
steps concerning cluster C. The first lossy step after an incoming lossy step
must be outgoing and, viceversa, the first lossy step after an outgoing lossy
step must be incoming. In other words, for each given cluster C, incoming
and outgoing steps are interleaved. Since during any incoming lossy step
t a new node of C must be visited, before the subsequent incoming lossy
step t′ > t the algorithm must visit a new node of V \ C. Visiting the first
node of V \C after time t will necessarily lead to a new outgoing lossy step.
Hence, incoming and outgoing steps must occur the same number of times,
and their sum must be at most twice the minimum of the size of borders
(what we called merging degree of the cluster), since each node is visited
only once. The only exception to this interleaving pattern occurs when a
cluster gets exhausted. In this case, an incoming step is not followed by any
outgoing step for the exhausted cluster.

Proof of Theorem 1. Index by 1, . . . , |P| the clusters in P. We abuse
the notation and use P also to denote the set of cluster indices. Let k(t) be
the index of the cluster which it belongs to, i.e., it ∈ Ck(t). We say that step
t is a lossy step if ŷt #= yt, i.e. the label of qt is different from the label of
it. A step t in which a mistake occurs is incoming for cluster i (denoted by
∗ → i) if qt #∈ Ci and it ∈ Ci, and it is outgoing for cluster i (denoted by
i → ∗) if qt ∈ Ci and it #∈ Ci. An outgoing step for cluster Ci is regular if
the previous step in which the algorithm made a mistake is incoming for Ci.
All other outgoing steps are called irregular. Let M→i (M reg

i→) be the set of
all incoming (regular outgoing) lossy steps for cluster Ci. Also, let M irr

i→ be
the set of all irregular outgoing lossy steps for Ci.

For each i ∈ P, define an injective mapping µi : M reg
i→ → M→i as follows

(see Figure 8 for reference): Each lossy step t in M reg
i→ is mapped to the

previous step t′ = µi(t) when a mistake occurred. Lemma 1 insures that such
step must be incoming for i since t is a regular outgoing step. This shows
that |M reg

i→ | ≤ |M→i|. Now, let t be any irregular outgoing step for some

16

ν2(s)

ν1(s)

µi(t) t s

Figure 8: Sequence (starting from the left) of incoming and regular outgoing lossy steps
involving a given cluster Ci. We only show the border nodes contributing to lossy steps.
We map injectively each regular outgoing lossy step t to the previous (incoming) lossy
step µi(t). We also map injectively each incoming lossy step s to the node ν1(s) in the
inner border, whose label was predicted at time s. Finally, we map injectively s also to
the node ν2(s) in the outer border that caused the previous (outgoing) lossy step for the
same cluster.

cluster, t′ be the last lossy step occurred before time t, and set j = k(t′).
The very definition of an irregular lossy step, combined with Lemma 1, allows
us to conclude that t′ is the last lossy step involving cluster Cj. This implies
that t′ cannot be followed by an outgoing lossy step j → ∗. Hence t′ is not
in the image of µj, and the previous inequality for |M reg

i→ | can be refined as
|M reg

i→ | ≤ |M→i|− Ii. Here Ii is the indicator function of the following event:
“The very last lossy step t′ such that either q′t or i′t belong to Ci is incoming
for Ci”. We now claim that

∑

i∈P

Ii ≥
∑

i∈P

|M irr
i→| .

In fact, if we let t be an irregular lossy step and i be the index of the cluster
for which the previous lossy step t′ is incoming, the fact that t is irregular
implies that Ci must be exhausted between time t′ and time t, which in turn
implies that Ii = 1, since t′ must be the very last lossy step involving cluster
Ci. This allows us to write

m =
∑

i∈P

|M reg
i→ ∪ M irr

i→| ≤
∑

i∈P

(
|M→i|− Ii + |M irr

i→|
)
≤

∑

i∈P

|M→i| . (3)

Next, for each i ∈ P we define two further injective mappings that associate
with each incoming lossy step ∗ → i a vertex in the inner border of Ci and

17

a vertex in the outer border of Ci. This shows that

|M→i| ≤ min
{
|∂Ci|, |∂Ci|

}
= δ(Ci)

for each i ∈ P. Together with (3), which we prove next, this completes the
proof (see again Figure 8 for a pictorial explanation).

The first injective mapping ν1 : M→i → ∂Ci is easily defined: ν1(t) =
it ∈ Ci. This is an injection because the algorithm can incur loss on a vertex
at most once. The second injective mapping ν2 : M→i → ∂Ci is defined in
the following way. Let M→i be equal to {t1, . . . , tk}, with t1 < · · · < tk. If
t = t1 then ν2(t) is simply qt ∈ ∂Ci. If instead t = tj with j ≥ 2, then
ν2(t) = it′ ∈ ∂Ci, where t′ is an outgoing lossy step i → ∗, lying between
tj−1 and tj . Note that cluster Ci cannot be exhausted after step tj−1 since
another incoming lossy step ∗ → i occurs at time tj > tj−1. Combined with
Lemma 1 this guarantees the existence of such a t′. Moreover, no subsequent
outgoing lossy steps i → ∗ can mispredict the same label yit′

. Hence ν2 is an
injection and the proof is concluded. !

Next, we turn to considering lower bounds on the prediction performance.
First, as we already observed, the edges (qt, it) produced during the online
functioning of the algorithm form a spanning tree T for G. Therefore, in
the case of binary labels, cga’s number m of mistakes is always equal to the
cutsize ΦT (y) of this spanning tree. This shows that an obvious lower bound
on m is the cost of the minimum spanning tree for G or, equivalently, the
size of the smallest regular partition P of V where each cluster includes only
nodes having the same label.

This argument can be strenghtened to show that an adaptive adversary
can always force any learner to make order of δ(P) mistakes in the binary
case, thus matching the upper bound of Theorem 1. For simplicity of exposi-
tion, the following theorem is stated for deterministic algorithms, though it
can be trivially seen to hold (with a different leading constant) for random-
ized algorithms as well.

Theorem 2. For any undirected and connected graph G = (V, E), for all
K < |V |, and for any learning strategy, there exists a labeling y of V such
that the strategy makes at least K mistakes while δ(P) ≤ 2K. Here P is
the smallest regular partition P of V where each cluster only includes nodes
having the same label.

18

Proof of Theorem 2. Let G0 = (V0, E0) be any connected component of
G with |V | − K nodes, and let V ′ = V \ V0 be the set of the remaining K
nodes. The adversarial strategy forces a mistake on each node in V ′, and
uses a common arbitrary label for all the nodes in V0.

To finish the proof, we must now show that δ(P) ≤ 2K. In order to
do so, observe that since G0 is a connected component in G, and all nodes
of V0 have the same label, V0 must be included in a cluster C0 ∈ P. Since
|C0| ≥ |V0| = |V |−K, we have that δ(C0) ≤ |∂C0| ≤ |V ′| = K. Consequently,
for the remaining clusters we have

∑

C∈P\{C0}

δ(C) ≤
∑

C∈P\{C0}

|∂C| ≤ |V ′| = K .

Hence, δ(P) ≤ 2K, and the proof is concluded.

It is important to observe that the adversarial strategy described in the above
proof works against a broad class of learning algorithms. In particular, it
works against learners that are given the graph structure beforehand and
have full control on the sequence i1, . . . , in of nodes to be predicted. In this
respect, Theorem 1 shows that our less informed protocol is actually sufficient
to match the performance level dictated by the lower bound.

We now turn to the analysis of upper bounds for cga in the general case
of nonbinary labels. The following definitions are useful for espressing the
cumulative loss bound of our algorithm: Let P be a regular partition of the
vertex set V and fix a cluster C ∈ P. We say that edge (qt, it) causes an
inter-cluster loss at time t if one of the two nodes of this edge lies in ∂C
and the other lies in ∂C . Edge (qt, it) causes an intra-cluster loss when
both qt and it are in C. We denote by !(C) the largest inter-cluster loss in
C, i.e.,

!(C) = max
i∈∂C, j #∈∂C, (i,j)∈E

!(yi, yj) .

Also !max
P is the maximum inter-cluster loss in the whole graph G, i.e., !max

P =
maxC∈P !(C). We also set for brevity !̄P = |P|−1

∑
C∈P !(C). Finally, we

define
ε(C) = max

TC

∑

(i,j)∈E(TC)

!(yi, yj)

where the maximum is over all spanning trees TC of C and E(TC) is the
edge set of TC . Note that ε(C) bounds from above the total loss incurred

19

in all steps t where qt and it both belong to C. As a matter of fact, cga’s
cumulative loss is actually

∑|V |
t=1 !(qt, it), where, as we said in Section 2, the

edges (qt, it), t = 1, . . . , |V |− 1 form a spanning tree for G; hence the subset
of such edges which are also incident to nodes in C form a spanning forest
for C. Our definition of ε(C) takes into account that the total loss associated
with the edge set of a spanning tree TC for C is at least as large as the total
loss associated with the edge set E(F) of any spanning forest F for C such
that E(F) ⊆ E(TC).

In the above definition, !(C) is a measure of connectedness between C
and the remaining clusters, ε(C) is a measure of “internal cohesion” of C,
while !max

P and !̄P give global distance measures among the clusters within
P.

The following theorem shows that cga’s cumulative loss can be bounded
in terms of the regular partition P that best trades off total intra-cluster
loss, which is expressed by ε(C)), against total inter-cluster loss, which is
expressed by δ(C) times the largest inter-cluster loss !(C). It is important to
stress that cga never explicitely computes this optimal partition: it is the
selection rule for qt in (2) that guarantees this optimal behavior.

Theorem 3. If cga is run on an undirected and connected graph G with
arbitrary real labels, then the cumulative loss can be bounded as

n∑

t=1

!(ŷt, yt) ≤ min
P

(

|P|
(
!max
P − !̄P

)
+

∑

C∈P

(
ε(C) + !(C)δ(C)

))

(4)

where the minimum is over all regular partitions P of V .

Remark 1. If ! is the zero-one loss, then the bound in (4) reduces to

n∑

t=1

!(ŷt, yt) ≤ min
P

∑

C∈P

(
ε(C) + δ(C)

)
. (5)

This shows that in the binary case the total number of mistakes can also
be bounded by the maximum number of edges connecting different clusters
that can be part of a spanning tree for G. In the binary case (5) achieves
its minimum either on the trivial partition P = {V } or on the partition
made up of the smallest number of clusters C, each one including only nodes
with the same label (this is what in Section 3 was called the natural regular

20

partition — see Theorem 1). In most cases, the natural regular partition is
the minimizer of (5), so that the intra-cluster term ε(C) disappears. Then
the bound only includes the sum of merging degrees (w.r.t. that partition),
thereby recovering the bound in Theorem 1. However, in certain degenerate
cases, the trivial partition P = {V } turns out to be the best one. In such a
case, the right-hand side of (5) becomes ε(V) which, in turn, is bounded by
ΦG(y).

The proof of Theorem 3 is similar to the one for the binary case, hence we only
emphasize the main differences. Let P be a regular partition of V . Clearly,
no matter how each C ∈ P is explored, if qt, it ∈ C then the contribution of
!(qt, it) to the total loss is bounded by ε(C). The remaining losses contributed
by any cluster C are of two kinds only: losses on incoming steps, where the
node it belongs to the inner border of C, and losses on outgoing steps, where
it belongs to the outer border of C. As for the binary case, with each such
step we can thus associate a node in the inner and the outer border of C,
since incoming and outgoing step alternate for each cluster. The exception is
when a cluster is exhausted which, at first glance, seems to requires adding
an extra term as big as !max

P times the size |P| of the partition (this term
could have a significant impact for certain graphs). However, as explained in
the proof below, !max

P can be replaced by the potentially much smaller term
!max
P − !̄P . In fact, in certain cases this extra term disappears, and the final

bound we obtain is just (5).

Proof of Theorem 3. Fix an arbitrary regular partition P of V and in-
dex by 1, . . . , |P| the clusters in it. We abuse the notation and use P also
to denote the set of cluster indices. We say that step t is a lossy step if
!(qt, it) > 0, and we distinguish between intra-cluster lossy steps (when qt

and it belong to the same cluster) and inter-cluster lossy steps (when qt and it
belong to different clusters). We crudely upper bound the total loss incurred
during intra-cluster lossy steps by

∑
C∈P ε(C). Hence, in the rest of the proof

we focus on bounding the total loss incurred during inter-cluster lossy steps
only. We define incoming and outgoing (regular and irregular) inter-cluster
lossy steps for a given cluster Ci (and the relative sets M→i, M reg

i→ and M irr
i→)

as in the binary case proof, as well as the injective mapping µi. In the binary
case we bounded |M reg

i→ | by |M→i| − Ii. In a similar fashion, we now bound∑
t∈M

reg
i→

!t by !(Ci)
(
|M→i| − Ii

)
, where we set for brevity !t = !(qt, it). We

21

can write
∑

i∈P

∑

t∈M
reg
i→∪M irr

i→

!t ≤
∑

i∈P

(
!(Ci)

(
|M→i|− Ii

)
+ !max

P |M irr
i→|

)

≤
∑

i∈P

!(Ci)|M→i| +
∑

j∈P : Ij=1

(
!max
P − !(Cj)

)

≤
∑

i∈P

!(Ci)|M→i| +
∑

i∈P

(
!max
P − !(Ci)

)

=
∑

i∈P

!(Ci)|M→i| + |P|
(
!max
P − !̄P

)

where the second inequality follows from
∑

i∈P Ii ≥
∑

i∈P |M irr
i→| (as for the

natural regular partition considered in the binary case).
The proof is concluded after defining the two injective mapping ν1 and

ν2 as in the binary case, and bounding again |M→i| through δ(Ci). !

6. Computational complexity

In this section we describe an efficient implementation of cga and discuss
some improvements for the special case of binary labels. This implementation
shows that cga is especially useful when dealing with large scale applications.

Recall that the path length assignment λ is a parameter of the algorithm
and satisfies (1). In order to develop a consistent argument about cga’s
time and space requirements, we need to make assumptions on the time it
takes to compute this function. When given the distance between any pair
of nodes i and j, and the loss !(j, j′) for any j′ adjacent to j, we assume the
length of the shortest path i, . . . , j, j ′ can be computed in constant time . This
assumption is easily seen to hold for many natural path length assignments λ
over graphs, for instance λ(s1, . . . , sd) = maxk !(sk−1, sk) and λ(s1, . . . , sd) =∑

k !(sk−1, sk) —note that both these assignments fulfill (1).
Because of the above assumption on the path length λ, in the general

case of real labels cga can be implemented using the well-known Dijkstra’s
algorithm for single-source shortest path (see, e.g., [7, Ch. 21]). After all
nodes in Vt−1 and all edges incident to it have been revealed (step 3 of the
protocol in Section 2), cga computes the distance between it and any other
node in Vt−1 by invoking Dijkstra’s algorithm on the sub-graph Gt, so that
cga can easily find node qt+1. If Dijkstra’s algorithm is implemented with

22

Fibonacci heaps [7, Ch. 25], the total time required for predicting all |V |
labels is3 O

(
|V ||E| + |V |2 log |V |

)
. In practice, the actual running time is

often lower, since at each time step t Dijkstra’s algorithm can be stopped as
soon as the node of ∂V t−1 nearest to it in Gt has been found.

On the other hand, the space complexity is always linear in the size of G.

6.1. An improved analysis for the binary case

We now describe a special implementation for the case of binary labels.
The additional assumption λ(s1, . . . , sd) = maxk !(sk−1, sk) allows us to ex-
ploit the simple structure of regular partitions. Coarsely speaking, we main-
tain information about the current inner border and clusters, and organize
this information in a balanced tree, connecting the nodes lying in the same
cluster through special linked lists.

In order to describe this implementation, it is important to observe that,
since the graph is revelead incrementally, it might be the case that a single
cluster C in G at time t happens to be split into several disconnected parts
in Gt. In other words, the algorithm always knows that each group of nodes
being part of the same uniformly labeled and connected subgraph of Gt is
a subset of the same cluster C in G, but need not know if there are other
groups of nodes of Vt with the same label, that are actually part of C.

We call sub-cluster each maximal set of nodes that are part of the same
uniformly labeled and connected subgraph of Gt. The data structures we
use for organizing the nodes observed so far by the algorithm combine the
following substructures:

• A self-balancing binary search tree T containing the labeled nodes in
∂V t. Each node of T corresponds to a node in ∂V t and contains the
associated label. We will refer to nodes in ∂V t and to nodes in T
interchangeably.

• Given a sub-cluster C, all nodes in C ∩∂V t are connected via a special
list L(C) called border sub-cluster list.

• All nodes in each border sub-cluster list L(C) are linked to a special
time-varying set r(C) called sub-cluster record. This record enables

3In practice, the actual running time is often far less than O
(
|V ||E| + |V |2 log |V |

)
,

since at each time step t Dijkstra’s algorithm can be stopped as soon as the node of ∂V t−1

nearest to it in Gt has been found.

23

access to the first and last element of L(C) and stores the size of L(C).

Let C(it) be the sub-cluster containing it at time t. The above data structures
are intended to support the following operations, which are executed in the
following order at each time step t, just after the algorithm has selected qt.

1. Insertion of it. When it is chosen by the adversary, cga receives
the list N(it) of all nodes in Vt−1 adjacent to it. Note that all nodes
in N(it) belong to ∂V t−1 and are therefore in T at the current time
step. In order to perform the insertion, the algorithm inserts it into T
and temporarily considers it as the unique node of a new sub-cluster
C(it). Hence, the algorithm creates a border sub-cluster list L(C(it))
containing only it and a sub-cluster record r(C(it)) linked solely to it.
In this step it is (provisionally) inserted into T and in L(C(it)) even if
it has no unexplored neighbors at time t. The insertion of it requires
O(log t) time, since |∂Vt| ≤ t.

2. Union of sub-clusters. After prediction, the label yt of it is revealed.
Since all nodes in N(it) having the same label as it belong now to the
same sub-cluster, we need to execute a sequence of merging operations
on each node j ∈ N(it). This essentially involves concatenating border
sub-cluster lists and updating the links from nodes in T to sub-cluster
records. The merging operation can be implemented as a union-by-rank
in standard union-find data structures (e.g., [7, Ch. 22]).

3. Elimination of nodes. All nodes in {it} ∪ N(it) that are not part of
∂V t are deleted from T , and the linked sub-cluster records are updated
(or eliminated). Once a node gets deleted from T , it will never be-
come again part of T . Hence, executing this step over the whole graph
requires O(|V | log |V |) time.

4. Choice of qt+1. If the border sub-cluster list of C(it) is not empty, qt+1

is chosen arbitrarily among the nodes of this list. Otherwise qt+1 is set
to any node in T .

Observe that checking all neighbors of it in T for deciding whether it is
necessary to run a merging operation in step 2 takes time O(|N(it)| log t).
Moreover, we now show that the running time for actually executing the
merging operation on |V | nodes is O

(
|V | log |V |

)
. In fact, for each node j in

N(it) cga repeats the following substeps:

1. We reach node j in T in time O(log t).

24

2. If the label of j is equal to yt, the algorithm merges the sub-cluster C(j)
with the current sub-cluster C(it) as follows: The algorithm concate-
nates the two associated border sub-cluster lists L(C(it)) and L(C(j)).
Let now Lmin be the smaller border sub-cluster list and Lmax be the
larger one. cga makes all nodes of Lmin to point to the sub-cluster
record rmax of Lmax. The sub-cluster record associated with Lmin is
eliminated and the size of the concatenated border sub-cluster list of
rmax is updated, along with its initial and final nodes. This operation
requires O(|Cmin|) time. Note that, after the update of the link be-
tween a node s ∈ V and its sub-cluster record, the size of the new
sub-cluster of s must be at least doubled. This implies that the total
time needed for this operation over all nodes in V is O(|V | log |V |).

3. If instead the label of j is different from yt the algorithm does nothing.

Figure 9 depitcs the first three steps (Insertion, Union, and Elimination) of
the above sequence at time t = 15.

The dominating cost in the time complexity is the total cost for reaching
at each time t the nodes of Vt−1 adjacent to it. Each of these it’s neighbors
can be bijectively associated with an edge of E (hence

∑|V |−1
t=1 |N(it)| = |E|).

Therefore the overall running time for predicting |V | labels is O
(
|E| log |V |+

|V | log |V |
)

= O
(
|E| log |V |

)
, which is the best one can hope for (an obvious

lower bound is |E|) up to a logarithmic factor.4

As for space complexity, it is important to stress that on every step t the
algorithm first stores and then throws away the received node list N(it) —in
the worst case the length of N(it) is linear in |V |. The space complexity is
therefore O(|V |). This optimal use of space is one of the most important
practical strengths of cga since the algorithm never needs to store the whole
graph seen so far.

7. Conclusions and open questions

We have presented a first step towards the study of problems related to
learning labeled graph exploration strategies. As we said in Subsection 1.1,

4Of course, if the algorithm knew beforehand the total number of nodes in V and each
node were numbered with an integer from 1 to |V | then, instead of T , we could use a
static data structure with constant time access to each element. In this case, the total
time complexity would be O(|E| + |V | log |V |).

25

Figure 9: A snapshopt of cga and related data structures at time t = 15 on a labeled
graph made up of two clusters (cluster “+” and cluster “−”). For simplicity in this
figure ij = j, for j = 1, . . . , 15. The top left part shows the graph with revealed and
unrevealed nodes. Just before node 15 gets revealed, the graph contains three subclusters:
C1 = {2, 3, 4, 5}, C2 = {1, 6, 7, 8, 9, 10}, and C3 = {11, 12, 13, 14}. The associated border
sub-cluster lists L(C1) = {2, 3, 4}, L(C2) = {1, 6, 7, 8}, and L(C3) = {11, 12, 13} are
organized into a balanced tree T . The corresponding sub-cluster records contain the
cardinality of each list as well as a pointer to the first and the last element of the lists.
Bottom left (a): When node 15 is revealed, a new (provisional) cluster C4 = {15} is created
along with the associated list and record. On the right-hand side a sequence of merging
operations between sub-clusters is shown. In particular: (b) shows how C4 is merged with
C3; in (c) the result of the previous merger is merged with C1. In (d) the elimination of
all nodes which are no longer in the inner border of V15 (nodes 7 and 12 in this case) is
shown.

this is a significant departure from more standard approaches assuming prior
knowledge of the underlying graph structure.

Our exploration/prediction model could be extended in several directions.
For example, in order to take into account information related to the presence

26

of edge weights, our protocol of Section 2 could be modified to let cga observe
the weights of all edges incident to the current node. Whenever the weights of
intra-cluster edges are heavier than those of inter-cluster ones, our algorithm
could take advantage of the additional weight information. This calls for
an analysis able to capture the interaction between node labels and edge
weights.

We may also consider scenarios where the optimal prediction on a node
i is some (possibly stochastic) function of an unknown node parameter ui ∈
Rd and some time-dependent side information xi,t ∈ Rd. In this model
the advertising agent can potentially suffer loss upon each visit of the same
node i, until ui is learned sufficiently well. This creates a trade-off between
exploration of new regions and exploitation of nodes that have been visited
often enough in the past. In this context, a regular labelling of the graph is
an assignment of vectors ui such that nodes can be partitioned in a way that
‖ui − uj‖ tends to be small whenever i and j belong to the same partition
element.

Moreover, it would be interesting to see whether algorithms as efficient
as cga could be made competitive with respect to clustering of the nodes
which are more general than regular partitions. Some examples of these
weaker notions of valid clustering are mentioned in [2].

Finally, recalling that the lower bound of Theorem 2 holds for the trans-
ductive learning protocol as well —see Subsection 1.1, it would be interesting
to further investigate the connections between online transductive learning
protocols and semi-active learning protocols, like the one studied in this pa-
per.

Acknowledgments

We would like to thank the anonymous reviewers for their comments
which greatly improved the presentation of this paper. This work was sup-
ported in part by the PASCAL2 Network of Excellence under EC grant
216886. This publication only reflects the authors’ views.

References

[1] S. Albers, M. Henzinger, Exploring unknown environments, SIAM Jour-
nal on Computing 29 (4) (2000) 1164–1188.

27

[2] N. Balcan, A. Blum, S. Vempala, A discriminative framework for clus-
tering via similarity functions, in: Proceedings of the 40th ACM Sym-
posium on the Theory of Computing, ACM Press, 2008.

[3] A. Blum, S. Chawla, Learning from labeled and unlabeled data using
graph mincuts, in: Proceedings of the 18th International Conference on
Machine learning, Morgan Kaufmann, 2001.

[4] A. Blum, J. Lafferty, M. Rwebangira, R. Reddy, Semi-supervised learn-
ing using randomized mincuts, in: Proceedings of the 21st International
Conference on Machine learning, 2004.

[5] D. Bryant, V. Berry, A structured family of clustering and tree construc-
tion methods, Advances in Applied Mathematics 27 (2001) 705–732.

[6] N. Cesa-Bianchi, C. Gentile, F. Vitale, Fast and optimal prediction of a
labeled tree, in: Proceedings of the 22nd Annual Conference on Learning
Theory, Omnipress, 2009.

[7] T. Cormen, C. Leiserson, R. Rivest, Introduction to Algorithms, Mc-
Graw Hill, 1990.

[8] X. Deng, C. Papadimitriou, Exploring an unknown graph, in: Proceed-
ings of the 31st Annual Symposium on the Foundations of Computer
Science, IEEE Press, 1990, pp. 355–361.

[9] S. Hanneke, An analysis of graph cut size for transductive learning, in:
Proceedings of the 23rd International Conference on Machine learning,
ACM Press, 2006, pp. 393–399.

[10] M. Hebster, M. Pontil, Prediction on a graph with the Perceptron, in:
Advances in Neural Information Processing Systems 21, MIT Press,
2007, pp. 577–584.

[11] M. Herbster, Exploiting cluster-structure to predict the labeling of a
graph, in: Proceedings of the 19th International Conference on Algo-
rithmic Learning Theory, Springer, 2008.

[12] M. Herbster, G. Lever, M. Pontil, Online prediction on large diameter
graphs, in: Advances in Neural Information Processing Systems 22, MIT
Press, 2009.

28

[13] M. Herbster, M. Pontil, S. Rojas-Galeano, Fast prediction on a tree,
in: Advances in Neural Information Processing Systems 22, MIT Press,
2009.

[14] M. Herbster, G. Lever, Predicting the labelling of a graph via minimum
p-seminorm interpolation, in: Proceedings of the 22nd Annual Confer-
ence on Learning Theory, Omnipress, 2009.

[15] M. Hebster, M. Pontil, and L. Wainer, Online learning over graphs, in
Proc. 22nd ICML, ACM Press, 2005, pp 305–132.

[16] T. Joachims, Transductive learning via spectral graph partitioning, in:
Proceedings of the 20th International Conference on Machine learning,
AAAI Press, 2003, pp. 305–132.

[17] I. Kondor, J. Lafferty, Diffusion kernels on graphs and other discrete
input spaces, in: Proceedings of the 19th International Conference on
Machine Learning, Morgan Kaufmann, 2002, pp. 315–322.

[18] J. Pelckmans, J. Shawe-Taylor, J. Suykens, B. D. Moor, Margin based
transductive graph cuts using linear programming, in: Proceedings of
the 11th International Conference on Artificial Intelligence and Statis-
tics, JMLR Proceedings Series, 2007, pp. 360–367.

[19] K. Pelckmans, An online algorithm for learning a labeling of a graph,
in: 6th International Workshop on Mining and Learning with Graphs,
2008.

[20] J. Remy, A. Souza, A. Steger, On an online spanning tree problem in
randomly weighted graphs, Combinatorics, Probability and Computing
16 (2007) 127–144.

[21] A. Smola, I. Kondor, Kernels and regularization on graphs, in: Proceed-
ings of the 16th Annual Conference on Learning Theory, Springer, 2003,
pp. 144–158.

[22] W. Yang, J. Dia, Discovering cohesive subgroups from social networks
for targeted advertising, Expert Systems with Applications 34 (2008)
2029–2038.

29

