
JMLR: Workshop and Conference Proceedings vol 23 (2012) 34.1–34.20 25th Annual Conference on Learning Theory

A Correlation Clustering Approach

to Link Classification in Signed Networks

Nicolò Cesa-Bianchi NICOLO.CESA-BIANCHI@UNIMI.IT
Dept. of Computer Science, Università degli Studi di Milano, Italy

Claudio Gentile CLAUDIO.GENTILE@UNINSUBRIA.IT
DiSTA, Università dell’Insubria, Italy

Fabio Vitale FABIO.VITALE@UNIMI.IT
Dept. of Computer Science, Università degli Studi di Milano, Italy

Giovanni Zappella GIOVANNI.ZAPPELLA@UNIMI.IT

Dept. of Mathematics, Università degli Studi di Milano, Italy

Editor: Shie Mannor, Nathan Srebro, Robert C. Williamson

Abstract

Motivated by social balance theory, we develop a theory of link classification in signed networks
using the correlation clustering index as measure of label regularity. We derive learning bounds
in terms of correlation clustering within three fundamental transductive learning settings: online,
batch and active. Our main algorithmic contribution is in the active setting, where we introduce a
new family of efficient link classifiers based on covering the input graph with small circuits. These
are the first active algorithms for link classification with mistake bounds that hold for arbitrary
signed networks.
Keywords: Online learning, transductive learning, active learning, social balance theory.

1. Introduction

Predictive analysis of networked data —such as the Web, online social networks, or biological
networks— is a vast and rapidly growing research area whose applications include spam detection,
product recommendation, link analysis, and gene function prediction. Networked data are typically
viewed as graphs, where the presence of an edge reflects a form of semantic similarity between the
data associated with the incident nodes. Recently, a number of papers have started investigating net-
works where links may also represent a negative relationship. For instance, disapproval or distrust
in social networks, negative endorsements on the Web, or inhibitory interactions in biological net-
works. Concrete examples from the domain of social networks and e-commerce are Slashdot, where
users can tag other users as friends or foes, Epinions, where users can give positive or negative rat-
ings not only to products, but also to other users, and Ebay, where users develop trust and distrust
towards agents operating in the network. Another example is the social network of Wikipedia ad-
ministrators, where votes cast by an admin in favor or against the promotion of another admin can
be viewed as positive or negative links. The emergence of signed networks has attracted attention
towards the problem of edge sign prediction or link classification. This is the task of determining
whether a given relationship between two nodes is positive or negative. In social networks, link clas-

c� 2012 N. Cesa-Bianchi, C. Gentile, F. Vitale & G. Zappella.

CESA-BIANCHI GENTILE VITALE ZAPPELLA

sification may serve the purpose of inferring the sentiment between two individuals, an information
which can be used, for instance, by recommender systems.

Early studies of signed networks date back to the Fifties. For example, Harary (1953) and Cartwright
and Harary (1956) model dislike and distrust relationships among individuals as negatively weighted
edges in a graph. The conceptual context is provided by the theory of social balance, formulated as a
way to understand the origin and the structure of conflicts in a network of individuals whose mutual
relationships can be classified as friendship or hostility (Heider, 1946). The advent of online social
networks has witnessed a renewed interest in such theories, and has recently spurred a significant
amount of work —see, e.g., (Guha et al., 2004; Kunegis et al., 2009; Leskovec et al., 2010b; Chiang
et al., 2011; Facchetti et al., 2011), and references therein. According to social balance theory, the
regularity of the network depends on the presence of “contradictory” cycles. The number of such
bad cycles is tightly connected to the correlation clustering index of Blum et al. (2004). This index
is defined as the smallest number of sign violations that can be obtained by clustering the nodes of a
signed graph in all possible ways. A sign violation is created when the incident nodes of a negative
edge belong to the same cluster, or when the incident nodes of a positive edge belong to different
clusters. Finding the clustering with the least number of violations is known to be NP-hard (Blum
et al., 2004).

In this paper, we use the correlation clustering index as a learning bias for the problem of link
classification in signed networks. As opposed to the experimental nature of many of the works that
deal with link classification in signed networks, we study the problem from a learning-theoretic
standpoint. We show that the correlation clustering index characterizes the prediction complexity of
link classification in three different supervised transductive learning settings. In online learning, the
optimal mistake bound (to within logarithmic factors) is attained by Weighted Majority run over a
pool of instances of the Halving algorithm. We also show that this approach cannot be implemented
efficiently under standard complexity-theoretic assumptions. In the batch (i.e., train/test) setting, we
use standard uniform convergence results for transductive learning (El-Yaniv and Pechyony, 2009)
to show that the risk of the empirical risk minimizer is controlled by the correlation clustering index.
We then observe that known efficient approximations to the optimal clustering can be used to obtain
polynomial-time (though not practical) link classification algorithms. In view of obtaining a prac-
tical and accurate learning algorithm, we then focus our attention to the notion of two-correlation
clustering derived from the original formulation of structural balance due to Cartwright and Harary.
This kind of social balance, based on the observation that in many social contexts “the enemy of
my enemy is my friend”, is used by known efficient and accurate heuristics for link classification,
like the least eigenvalue of the signed Laplacian and its variants (Kunegis et al., 2009). The two-
correlation clustering index is still hard to compute, but the task of designing good link classifiers
sightly simplifies due to the stronger notion of bias. In the active learning protocol, we show that
the two-correlation clustering index bounds from below the test error of any active learner on any
signed graph. Then, we introduce the first efficient active learner for link classification with perfor-
mance guarantees (in terms of two-correlation clustering) for any signed graph. Our active learner
receives a query budget as input parameter, requires time O

�
|E|

�
|V | ln |V |

�
to predict the edges

of any graph G = (V,E), and is relatively easy to implement.

34.2

A CORRELATION CLUSTERING APPROACH TO LINK CLASSIFICATION

2. Preliminaries

We consider undirected graphs G = (V,E) with unknown edge labeling Yi,j ∈ {−1,+1} for
each (i, j) ∈ E. Edge labels of the graph are collectively represented by the associated signed
adjacency matrix Y , where Yi,j = 0 whenever (i, j) �∈ E. The edge-labeled graph G will hence-
forth be denoted by (G, Y). Given (G, Y), the cost of a partition of V into clusters is the number
of negatively-labeled within-cluster edges plus the number of positively-labeled between-cluster
edges. We measure the regularity of an edge labeling Y of G through the correlation clustering
index ∆(Y). This is defined as the minimum over the costs of all partitions of V . Since the cost
of a given partition of V is an obvious quantification of the consistency of the associated cluster-
ing, ∆(Y) quantifies the cost of the best way of partitioning the nodes in V . Note that the number
of clusters is not fixed ahead of time. In the next section, we relate this regularity measure to the
optimal number of prediction mistakes in edge classification problems.

A bad cycle in (G, Y) is a simple cycle (i.e., a cycle with no repeated nodes, except the first
one) containing exactly one negative edge. Because we intuitively expect a positive link between
two nodes be adjacent to another positive link (e.g., the transitivity of a friendship relationship
between two individuals),1 bad cycles are a clear source of irregularity of the edge labels. The
following fact relates ∆(Y) to bad cycles —see, e.g., (Demaine et al., 2006).

Proposition 1 For all (G, Y), ∆(Y) = 0 iff there are no bad cycles. Moreover, ∆(Y) is the
smallest number of edges that must be removed from G in order to delete all bad cycles.

Since the removal of an edge can delete more than one bad cycle, ∆(Y) is upper bounded by the
number of bad cycles in (G, Y). For similar reasons, ∆(Y) is also lower bounded by the number of
edge-disjoint bad cycles in (G, Y). We now show2 that Y may be very irregular on dense graphs,
where ∆(Y) may take values as big as Θ(|E|).

Lemma 2 Given a clique G = (V,E) and any integer 0 ≤ K ≤
1
6(|V |− 3)(|V |− 4), there exists

an edge labeling Y such that ∆(Y) = K.

The restriction of the correlation clustering index to two clusters only leads to measure the regu-
larity of an edge labeling Y through ∆2(Y), i.e., the minimum cost over all two-cluster partitions of
V . Clearly, ∆2(Y) ≥ ∆(Y) for all Y . The fact that, at least in social networks, ∆2(Y) tends to be
small is motivated by the Cartwright-Harary theory of structural balance (“the enemy of my enemy
is my friend”).3 On signed networks, this corresponds to the following multiplicative rule: Yi,j is
equal to the product of signs on the edges of any path connecting i to j. It is easy to verify that,
if the multiplicative rule holds for all paths, then ∆2(Y) = 0. It is well known that ∆2 is related
to the signed Laplacian matrix Ls of (G, Y). Similar to the standard graph Laplacian, the signed
Laplacian is defined as Ls = D − Y , where D = Diag(d1, . . . , dn) is the diagonal matrix of node
degrees. Specifically, we have

4∆2(Y)

n
= min

x∈{−1,+1}n
x�

Lsx

�x�2
. (1)

1. Observe that, as far as ∆(Y) is concerned, this need not be true for negative links —see Proposition 1. This is
because the definition of ∆(Y) does not constrain the number of clusters of the nodes in V .

2. Due to space limitations, all proofs are given in the appendix.
3. Other approaches consider different types of local structures, like the contradictory triangles of Leskovec et al.

(2010a), or the longer cycles used in (Chiang et al., 2011).

34.3

CESA-BIANCHI GENTILE VITALE ZAPPELLA

Moreover, ∆2(Y) = 0 is equivalent to |Ls| = 0 —see, e.g., (Hou, 2005). Now, computing ∆2(Y) is
still NP-hard (Giotis and Guruswami, 2006). Yet, because (1) resembles an eigenvalue/eigenvector
computation, Kunegis et al. (2009) and other authors have looked at relaxations similar to those
used in spectral graph clustering (Von Luxburg, 2007). If λmin denotes the smallest eigenvalue of
Ls, then (1) allows one to write

λmin = min
x∈Rn

x�
Lsx

�x�2
≤

4∆2(Y)

n
. (2)

As in practice one expects ∆2(Y) to be strictly positive, solving the minimization problem in (2)
amounts to finding an eigenvector v associated with the smallest eigenvalue of Ls. The least eigen-
value heuristic builds Ls out of the training edges only, computes the associated minimal eigenvec-
tor v, uses the sign of v’s components to define a two-clustering of the nodes, and then follows this
two-clustering to classify all the remaining edges: Edges connecting nodes with matching signs are
classified +1, otherwise they are −1. In this sense, this heuristic resembles the transductive risk
minimization procedure described in Subsection 3.2. However, no theoretical guarantees are known
for such spectral heuristics.

When ∆2 is the measure of choice, a bad cycle is any simple cycle containing an odd number
of negative edges. Properties similar to those stated in Lemma 2 can be proven for this new notion
of bad cycle.

3. Mistake bounds and risk analysis

In this section, we study the prediction complexity of classifying the links of a signed network in
the online and batch transductive settings. Our bounds are expressed in terms of the correlation
clustering index ∆. The ∆2 index will be used in Section 4 in the context of active learning.

3.1. Online transductive learning

We first show that, disregarding computational aspects, ∆(Y)+ |V | characterizes (up to log factors)
the optimal number of edge classification mistakes in the online trandsuctive learning protocol. In
this protocol, the edges of the graph are presented to the learner according to an arbitrary and
unknown order e1, . . . , eT , where T = |E|. At each time t = 1, . . . , T the learner receives edge et

and must predict its label Yt. Then Yt is revealed and the learner knows whether a mistake occurred.
The learner’s performance is measured by the total number of prediction mistakes on the worst-case
order of edges. Similar to standard approaches to node classification in networked data (Herbster
and Pontil, 2007; Cesa-Bianchi et al., 2009, 2010), we work within a transductive learning setting.
This means that the learner has preliminary access to the entire graph structure G where labels in Y

are absent. We start by showing lower bounds that hold for any online edge classifier.

Theorem 3 For any G = (V,E), any K ≥ 0, and any online edge classifier, there exists an
edge labeling Y on which the classifier makes at least |V | − 1 + K mistakes while ∆(Y) ≤ K.
Moreover, if G is a clique, then there exists an edge labeling Y on which the classifier makes at
least |V |+max

�
K, K log2

|E|
2K

�
+ Ω(1) mistakes while ∆(Y) ≤ K.

The above lower bounds are nearly matched by a standard version space algorithm: the Halving
algorithm —see, e.g., (Littlestone, 1989). When applied to link classification, the Halving algorithm

34.4

A CORRELATION CLUSTERING APPROACH TO LINK CLASSIFICATION

with parameter d, denoted by HALd, predicts the label of edge et as follows: Let St be the number
of labelings Y consistent with the observed edges and such that ∆(Y) = d (the version space).
HALd predicts +1 if the majority of these labelings assigns +1 to et. The +1 value is also predicted
as a default value if either St is empty or there is a tie. Otherwise the algorithm predicts −1. Now
consider the instance of Halving run with parameter d∗ = ∆(Y) for the true unknown labeling Y .
Since the size of the version space halves after each mistake, this algorithm makes at most log2 |S∗|
mistakes, where S∗ = S1 is the initial version space of the algorithm. If the online classifier runs the
Weighted Majority algorithm of Littlestone and Warmuth (1994) over the set of at most |E| experts
corresponding to instances of HALd for all possible values d of ∆(Y) (recall Lemma 2), we easily
obtain the following.

Theorem 4 Consider the Weighted Majority algorithm using HAL1, . . . , HAL|E| as experts. The
number of mistakes made by this algorithm when run over an arbitrary permutation of edges of a
given signed graph (G, Y) is at most of the order of

�
|V |+∆(Y)

�
log2

|E|
∆(Y) .

Comparing Theorem 4 to Theorem 3 provides our characterization of the prediction complexity of
link classification in the online transductive learning setting.

Computational complexity. Unfortunately, as stated in the next theorem, the Halving algorithm
for link classification is only of theoretical relevance, due to its computational hardness. In fact, this
is hardly surprising, since ∆(Y) itself is NP-hard to compute (Blum et al., 2004).

Theorem 5 The Halving algorithm cannot be implemented in polytime unless RP = NP.

3.2. Batch transductive learning

We now prove that ∆ can also be used to control the number of prediction mistakes in the batch
transductive setting. In this setting, given a graph G = (V,E) with unknown labeling Y ∈

{−1,+1}|E| and correlation clustering index ∆ = ∆(Y), the learner observes the labels of a ran-
dom subset of m training edges, and must predict the labels of the remaining u test edges, where
m+ u = |E|.

Let 1, . . . ,m+ u be an arbitrary indexing of the edges in E. We represent the random set of m
training edges by the first m elements Z1, . . . , Zm in a random permutation Z = (Z1, . . . , Zm+u)
of {1, . . . ,m + u}. Let P(V) be the class of all partitions of V and f ∈ P denote a specific
(but arbitrary) partition of V . Partition f predicts the sign of an edge t ∈ {1, . . . ,m + u} using
�f(t) ∈ {−1,+1}, where �f(t) = 1 if f puts the vertices incident to the t-th edge of G in the
same cluster, and −1 otherwise. For the given permutation Z, we let ∆m(f) denote the cost of
the partition f on the first m training edges of Z with respect to the underlying edge labeling Y .
In symbols, ∆m(f) =

�m
t=1

� �f(Zt) �= YZt

�
. Similarly, we define ∆u(f) as the cost of f on the

last u test edges of Z, ∆u(f) =
�m+u

t=m+1

� �f(Zt) �= YZt

�
. We consider algorithms that, given

a permutation Z of the edges, find a partition f ∈ P approximately minimizing ∆m(f). For
those algorithms, we are interested in bounding the number ∆u(f) of mistakes made when using
f to predict the test edges Zm+1, . . . , Zm+u. In particular, as for more standard empirical risk
minimization schemes, we show a bound on the number of mistakes made when predicting the test
edges using a partition that approximately minimizes ∆ on the training edges.

The result that follows is a direct consequence of (El-Yaniv and Pechyony, 2009), and holds for
any partition that approximately minimizes the correlation clustering index on the training set.

34.5

CESA-BIANCHI GENTILE VITALE ZAPPELLA

Theorem 6 Let (G, Y) be a signed graph with ∆(Y) = ∆. Fix δ ∈ (0, 1), and let �f∗ ∈ P(V) be
such that ∆m(�f∗) ≤ κ minf∈P ∆m(f) for some κ ≥ 1. If the permutation Z is drawn uniformly
at random, then there exist constants c, c� > 0 such that

1
u∆u(�f∗) ≤ κ

m+u∆+ c

��
1
m + 1

u

� �
|V | ln |V |+ ln 2

δ

�
+ c

�
κ

�
u/m
m+u ln 2

δ

holds with probability at least 1− δ.

We can give a more concrete instance of Theorem 6 by using the polynomial-time algorithm of De-
maine et al. (2006) which finds a partition �f∗ ∈ P such that ∆m(�f∗) ≤ 3 ln(|V |+1)minf∈P ∆m(f) .
Assuming for simplicity u = m = 1

2 |E|, the bound of Theorem 6 can be rewritten as

∆u(�f∗) ≤ 3
2 ln(|V |+ 1)∆+O

��
|E|

�
|V | ln |V |+ ln 1

δ

�
+ ln |V |

�
|E| ln 1

δ

�
.

This shows that, when training and test set sizes are comparable, approximating ∆ on the training set
to within a factor ln |V | yields at most order of ∆ ln |V |+

�
|E| |V | ln |V | errors on the test set. Note

that for moderate values of ∆ the uniform convergence term
�

|E| |V | ln |V | becomes dominant
in the bound.4 Although in principle any approximation algorithm with a nontrivial performance
guarantee can be used to bound the risk, we are not aware of algorithms that are reasonably easy to
implement and, more importantly, scale to large networks of practical interest.

4. Two-clustering and active learning

In this section, we exploit the ∆2 inductive bias to design and analyze algorithms in the active
learning setting. Active learning algorithms work in two phases: a selection phase, where a query
set of given size is constructed, and a prediction phase, where the algorithm receives the labels of
the edges in the query set and predicts the labels of the remaining edges. In the protocol we consider
here the only labels ever revealed to the algorithm are those in the query set. In particular, no labels
are revealed during the prediction phase. We evaluate our active learning algorithms just by the
number of mistakes made in the prediction phase as a function of the query set size.

Similar to previous sections, we first show that the prediction complexity of active learning is
lower bounded by the correlation clustering index, where we now use ∆2 instead of ∆. In particular,
any active learning algorithm for link classification that queries at most a constant fraction of the
edges must err, on any signed graph, on at least order of ∆2(Y) test edges, for some labeling Y .

Theorem 7 For any signed graph (G, Y), any K ≥ 0, and any active learning algorithm A for
link classification that queries the labels of a fraction α ≥ 0 of the edges of G, there exists a
randomized labeling such that the number M of mistakes made by A in the prediction phase satisfies
EM ≥

1−α
2 K, while ∆2(Y) ≤ K.

Comparing this bound to that in Theorem 3 reveals that the active learning lower bound seems
to drop significantly. Indeed, because the two learning protocols are incomparable (one is passive
online, the other is active batch) so are the two bounds. Besides, Theorem 3 depends on ∆(Y) while
Theorem 7 depends on the larger quantity ∆2(Y). Next, we design and analyze two efficient active
learning algorithms working under different assumptions on the way edges are labeled. Specifically,

4. A very similar analysis can be carried out using ∆2 instead of ∆. In this case the uniform convergence term is of the
form

�
|E| |V |.

34.6

A CORRELATION CLUSTERING APPROACH TO LINK CLASSIFICATION

we consider two models for generating labelings Y : p-random and adversarial. In the p-random
model, an auxiliary labeling Y

� is arbitrarily chosen such that ∆2(Y �) = 0. Then Y is obtained
through a probabilistic perturbation of Y

�, where P
�
Ye �= Y

�
e

�
≤ p for each e ∈ E (note that

correlations between flipped labels are allowed) and for some p ∈ [0, 1). In the adversarial model,
Y is completely arbitrary, and corresponds to an arbitrary partition of V made up of two clusters.

4.1. Random labeling

Let Eflip denote the subset of edges e ∈ E such that Ye �= Y
�
e in the p-random model. The bounds

we prove hold in expectation over the perturbation of Y � and depend on E|Eflip| rather than ∆2(Y).
Clearly, since each label flip can increase ∆2 by at most one, then ∆2(Y) ≤ |Eflip|. Moreover,
there exist classes of graphs on which |Eflip| = ∆2 with high probability when p is small. A more
precise assessment of the relationships between |Eflip| and ∆2 is deferred to the full paper.

During the selection phase, our algorithm for the p-random model queries only the edges of a
spanning tree T = (VT , ET) of G. In the prediction phase, the label of any remaining test edge
e
� = (i, j) �∈ ET is predicted with the sign of the product over all edges along the unique path
PathT (e�) between i and j in T . Clearly, if a test edge e� is predicted wrongly, then either e� ∈ Eflip

or PathT (e�) contains at least one edge of Eflip. Hence, the number of mistakes MT made by our
active learner on the set of test edges E \ ET can be deterministically bounded by

MT ≤ |Eflip|+
�

e�∈E\ET

�

e∈E
I
�
e ∈ PathT (e

�)
�
I
�
e ∈ Eflip

�
(3)

where I
�
·
�

denotes the indicator of the Boolean predicate at argument. Let
��PathT (e�)

�� denote
the number of edges in PathT (e�). A quantity which can be related to MT is the average stretch
of a spanning tree T which, for our purposes, reduces to 1

|E|

�
|V |− 1 +

�
e�∈E\ET

��PathT (e�)
��
�
.

A beautiful result of Elkin et al. (2010) shows that every connected and unweighted graph has a
spanning tree with an average stretch of just O

�
log2 |V | log log |V |

�
. Moreover, this low-stretch

tree can be constructed in time O
�
|E| ln |V |

�
. If our active learner uses a spanning tree with the

same low stretch, then the following result can be easily proven.

Theorem 8 Let (G, Y) be labeled according to the p-random model and assume the active learner
queries the edges of a spanning tree T with average stretch O

�
log2 |V | log log |V |

�
. Then EMT ≤

p|E|×O
�
log2 |V | log log |V |

�
.

4.2. Adversarial labeling

The p-random model has two important limitations: first, depending on the graph topology, the
expected size of Eflip may be significantly larger than ∆2. Second, the tree-based active learning
algorithm for this model works with a fixed query budget of |V | − 1 edges (those of a spanning
tree). We now introduce a more sophisticated algorithm for the adversarial model which addresses
both issues: it has a guaranteed mistake bound expressed in terms of ∆2 and works with an arbitrary
budget of edges to query.

Given (G, Y), fix an optimal two-clustering of the nodes with cost ∆2 = ∆2(Y). Call δ-edge
any edge (i, j) ∈ E whose sign Yi,j disagrees with this optimal two-clustering. Namely, Yi,j = −1
if i and j belong to the same cluster, or Yi,j = +1 if i and j belong to different clusters. Let E∆ ⊆ E

be the subset of δ-edges.

34.7

CESA-BIANCHI GENTILE VITALE ZAPPELLA

We need the following ancillary definitions and notation. Given a graph G = (VG, EG), and
a rooted subtree T = (VT , ET) of G, we denote by Ti the subtree of T rooted at node i ∈ VT .
Moreover, if T is a tree and T

� is a subtree of T , both being in turn subtrees of G, we let EG(T �
, T)

be the set of all edges of EG \ ET that link nodes in VT � to nodes in VT \ VT � . Also, for nodes
i, j ∈ VG, of a signed graph (G, Y), and tree T , we denote by πT (i, j) the product over all edge
signs along the (unique) path PathT (i, j) between i and j in T . Finally, a circuit C = (VC , EC)
(with node set VC ⊆ VG and edge set EC ⊆ EG) of G is a cycle in G. We do not insist on the cycle
being simple. Given any edge (i, j) belonging to at least one circuit C = (VC , EC) of G, we let
Ci,j be the path obtained by removing edge (i, j) from circuit C. If C contains no δ-edges, then it
must be the case that Yi,j = πCi,j (i, j).

Our algorithm finds a circuit covering C(G) of the input graph G, in such a way that each circuit
C ∈ C(G) contains at least one edge (iC , jC) belonging solely to circuit C. This edge is included
in the test set, whose size is therefore equal to |C(G)|. The query set contains all remaining edges.
During the prediction phase, each test label YiC ,jC is simply predicted with πCiC,jC

(iC , jC). See
Figure 1 (left) for an example.

For each edge (i, j), let Li,j be the the number of circuits of C(G) which (i, j) belongs to. We
call Li,j the load of (i, j) induced by C(G). Since we are facing an adversary, and each δ-edge may
give rise to a number of prediction mistakes which is at most equal to its load, one would ideally
like to construct a circuit covering C(G) minimizing max(i,j)∈E Li,j , and such that |C(G)| is not
smaller than the desired test set cardinality.

Our algorithm takes in input a test set-to-query set ratio ρ and finds a circuit covering C(G) such
that: (i) |C(G)| is the size of the test set, and (ii) |C(G)|

Q−|VG|+1 ≥ ρ, where Q is the size of the chosen
query set, and (iii) the maximal load max(i,j)∈EG

Li,j is O(ρ3/2
�
|VG|).

For the sake of presentation, we first describe a simpler version of our main algorithm. This
simpler version, called SCCCC (Simplified Constrained Circuit Covering Classifier), finds a circuit
covering C(G) such that max(i,j)∈E Li,j = O(ρ

�
|EG|), and will be used as a subroutine of the

main algorithm.
In a preliminary step, SCCCC draws an arbitrary spanning tree T of G and queries the labels of

all edges of T . Then SCCCC partitions tree T into a small number of connected components of T .
The labels of the edges (i, j) with i and j in the same component are simply predicted by πT (i, j).
This can be seen to be equivalent to create, for each such edge, a circuit made up of edge (i, j) and
PathT (i, j). For each component T �, the edges in EG(T �

, T) are partitioned into query set and test
set satisfying the given test set-to-query set ratio ρ, so as to increase the load of each queried edge
in ET \ET � by only O(ρ). Specifically, each test edge (i, j) ∈ EG(T �

, T) lies on a circuit made up
of edge (i, j) along with a path contained in T

�, a path contained in T \ T �, and another edge from
EG(T �

, T). A key aspect to this algorithm is the way of partitioning tree T so as to guarantee that
the load of each queried edge is O(ρ

�
|EG|).

In turn, SCCCC relies on two subroutines, TREEPARTITION and EDGEPARTITION, which we
now describe. Let T be the spanning tree of G drawn in SCCCC’s preliminary step, and T

� be any
subtree of T . Let ir be an arbitrary vertex belonging to both VT and VT � and view both trees as
rooted at ir. TREEPARTITION(T �

, G, θ) returns a subtree T �
j of T � such that: (i) for each node v �≡ j

of T �
j we have |EG(T �

v, T
�)| ≤ θ, and (ii) |EG(T �

j , T
�)| ≥ θ. In the special case when no such subtree

T
�
j exists, the whole tree T � is returned, i.e., we set T �

j ≡ T
�. As we show in Lemma 11 in Appendix

B, in this special case (i) still holds. TREEPARTITION can be described as follows —see Figure 1

34.8

A CORRELATION CLUSTERING APPROACH TO LINK CLASSIFICATION

!

"#

!

#

$

$

"

!

"#

!$%
!$&

!$'

Figure 1: Left: An illustration of how a circuit can be used in the selection and prediction phases. An
optimal two-cluster partition is shown. The negative edges are shown using dashed (either thick black or
thin gray) lines. Two circuits are depicted using thick black lines: one containing edge (i1, j1), the other
containing edge (i2, j2). For each circuit C in the graph, we can choose any edge belonging to C to be part
of the test set, all remaining edge labels being queried. In this example, if we select (i1, j1) as test set edge,
then label Yi1,j1 is predicted with (−1)5 = −1, since 5 is the number of negative edges in EC \ {(i1, j1)}.
Observe that the presence of a δ-edge (the negative edge incident to i1) causes a prediction mistake in this
case. The edge Yi2,j2 on the other circuit is predicted correctly, since this circuit contains no δ-edges. Right:

A graph G = (V,E) and a spanning tree T = (VT , ET), rooted at ir, whose edges ET are indicated by thick
lines. A subtree Tj , rooted at j, with grey nodes. According to the level order induced by root ir, nodes
j
�
1, j�2 and j

�
3 are the children of node j. TREEPARTITION computes EG(Tj , T), the set of edges connecting

one grey node to one white node, as explained in the main text. Since |EG(Tj , T)| ≥ 9, TREEPARTITION
invoked with θ = 9 returns tree Tj .

(right) for an example. We perform a depth-first visit of the input tree starting from ir. We associate
some of the nodes i ∈ VT � with a record Ri containing all edges of EG(T �

i , T
�). Each time we visit

a leaf node j, we insert in Rj all edges linking j to all other nodes in T
� (except for j’s parent). On

the other hand, if j is an internal node, when we visit it for the last time,5 we set Rj to the union
of Rj� over all j’s children j

� (j�1, j�2, and j
�
3 in Figure 1 (right)), excluding the edges connecting

the subtrees Tj� to each other. For instance, in Figure 1 (right), we include all gray edges departing
from subtree Tj , but exclude all those joining the three dashed areas to each other. In both cases,
once Rj is created, if |Rj | ≥ θ or j ≡ ir, TREEPARTITION stops and returns T �

j . Observe that the
order of the depth-first visit ensures that, for any internal node j, when we are about to compute Rj ,
all records Rj� associated with j’s children j

� are already available.
We now move on to describe EDGEPARTITION. Let ir �= q ∈ VT � . EDGEPARTI-

TION(T �
q, T

�
, G, ρ) returns a partition E = {E1, E2, . . .} of EG(T �

q, T
�) into edge subsets of car-

dinality ρ + 1, that we call sheaves. If |EG(T �
q, T

�)| is not a multiple of ρ + 1, the last sheaf can
be as large as 2ρ. After this subroutine is invoked, for each sheaf Ek ∈ E , SCCCC queries the
label of an arbitrary edge (i, j) ∈ Ek, where i ∈ VT �

q
and j ∈ VT � \ VT �

q
. Each further edge

(i�, j�) ∈ Ek \ {(i, j)}, having i
� ∈ VT �

q
and j

� ∈ VT � , will be part of the test set, and its label
will be predicted using the path6 PathT (i�, i) → (i, j) → PathT (j, j�) which, together with test
edge (i�, j�), forms a circuit. Note that all edges along this path are queried edges and, moreover,

5. Since j is an internal node, its last visit is performed during a backtracking step of the depth-first visit.
6. Observe that PathT �

q
(j, j�) ≡ PathT �(j, j�) ≡ PathT (j, j

�), since T �
q ⊆ T � ⊆ T .

34.9

CESA-BIANCHI GENTILE VITALE ZAPPELLA

SCCCC(ρ, θ) Parameters: ρ > 0, θ ≥ 1.
1. Draw an arbitrary spanning tree T of G, and query all its edge labels
2. Do

3. Tq ← TREEPARTITION(T,G, θ)
4. For each i, j ∈ VTq , set Ŷi,j ← πT (i, j)
5. E ← EDGEPARTITION(Tq, T,G, ρ)
6. For each Ek ∈ E

7. query the label of an arbitrary edge (i, j) ∈ Ek

8. For each edge (i�, j�) ∈ Ek \ {(i, j)}, where i, i
� ∈ VTq and j, j

� ∈ VT \ VTq

9. Ŷi�,j� ← πT (i�, i) · Yi,j · πT (j, j�)
10. T ← T \ Tq

11. While (VT �≡ ∅)
Figure 2: The Simplified Constrained Circuit Covering Classifier SCCCC.

Li,j ≤ 2ρ) because (i, j) cannot belong to more than 2ρ circuits of C(G). Label Yi�,j� is therefore
predicted by πT (i�, i) · Yi,j · πT (j, j�).

From the above, we see that EG(T �
q, T

�) is partioned into test set and query set with a ratio
at least ρ. The partition of E(T �

q, T
�) into sheaves is carefully performed by EDGEPARTITION

so as to ensure that the load increse of the edges in ET � \ ET �
q

is only O(ρ), independent of the
size of E(T �

q, T
�). Moreover, as we show below, the circuits of C(G) that we create by invoking

EDGEPARTITION(T �
q, T

�
, G, ρ) increase the load of each edge of (u, v) (where u is parent of v in

T
�
q) by at most 2ρ |EG(T �

u, T
�)|. This immediately implies —see Lemma 11(i) in Appendix B—

that if T �
q was previously obtained by calling TREEPARTITION(T �

, G, θ), then the load of each edge
of T �

q gets increased by at most 2ρθ. We now describe how EDGEPARTITION builds the partition of
EG(T �

q, T
�) into sheaves. EDGEPARTITION(T �

q, T
�
, G, ρ) first performs a depth-first visit of T � \ T �

q

starting from root ir. Then the edges of EG(T �
q, T

�) are numbered consecutively by the order of this
visit, where the relative ordering of the edges incident to the same node encountered during this visit
can be set arbitrarily. Figure 4 in Appendix B helps visualizing the process of sheaf construction.
One edge per sheaf is queried, the remaining ones are assigned to the test set.

SCCCC’s pseudocode is given in Figure 2, Ŷi,j therein denoting the predicted labels of the test set
edges (i, j). The algorithm takes in input the ratio parameter ρ (ruling the test set-to-query set ratio),
and the threshold parameter θ. After drawing an initial spanning tree T of G, and querying all its
edge labels, SCCCC proceeds in steps as follows. At each step, the algorithm calls TREEPARTITION
on (the current) T . Then the labels of all edges linking pairs of nodes i, j ∈ VTq are selected to be
part of the test set, and are simply predicted by Ŷi,j ← πT (i, j). Then, all edges linking the nodes in
VTq to the nodes in VT \VTq are split into sheaves via EDGEPARTITION. For each sheaf, an arbitrary
edge (i, j) is selected to be part of the query set. All remaining edges (i�, j�) become part of the
test set, and their labels are predicted by Ŷi�,j� ← πT (i�, i) · Yi,j · πT (j, j�), where i, i

� ∈ VTq and
j, j

� ∈ VT \ VTq . Finally, we shrink T as T \ Tq, and iterate until VT ≡ ∅. Observe that in the last
do-while loop execution we have T ≡ TREEPARTITION(T,G, θ). Moreover, if Tq ≡ T , Lines 6–9
are not executed since EG(Tq, T) ≡ ∅, which implies that E is an empty set partition.

We are now in a position to describe a more refined algorithm, called CCCC (Constrained Circuit
Covering Classifier — see Figure 3), that uses SCCCC on suitably chosen subgraphs of the original

34.10

A CORRELATION CLUSTERING APPROACH TO LINK CLASSIFICATION

CCCC(ρ) Parameter: ρ satisfying 3 < ρ ≤
|EG|
|VG| .

1. Initialize E ← EG

2. Do

3. Select an arbitrary edge subset E� ⊆ E such that |E�| = min{|E|, ρ|VG|}

4. Let G� = (VG, E
�)

5. For each connected component G�� of G�, run SCCCC(ρ,
�
|E�|) on G

��

6. E ← E \ E�

7. While (E �≡ ∅)
Figure 3: The Constrained Circuit Covering Classifier CCCC.

graph. The advantage of CCCC over SCCCC is that we are afforded to reduce the mistake bound
from O

�
∆2(Y) ρ

�
|EG|

�
(Lemma 14 in Appendix B) to O

�
∆2(Y) ρ

3
2

�
|VG|

�
. CCCC proceeds in

(at most) |EG|/(ρ|VG|) steps as follows. At each step the algorithm splits into query set and test set
an edge subset E� ⊆ E, where E is initially EG. The size of E� is guaranteed to be at most ρ|VG|.
The edge subset E� is made up of arbitrarily chosen edges that have not been split yet into query and
test set. The algorithm considers subgraph G

� = (VG, E
�), and invokes SCCCC on it for querying

and predicting its edges. Since G
� can be disconnected, CCCC simply invokes SCCCC(ρ,

�
|E�|) on

each connected component of G�. The labels of the test edges in E
� are then predicted, and E is

shrunk to E \ E�. The algorithm terminates when E ≡ ∅.

Theorem 9 The number of mistakes made by CCCC(ρ), with ρ satisfying 3 < ρ ≤
|EG|
|VG| , on a graph

G = (VG, EG) with unknown labeling Y is O
�
∆2(Y)ρ

3
2

�
|VG|

�
. Moreover, we have |C(G)|

Q ≥
ρ−3
3 ,

where Q is the size of the query set and |C(G)| is the size of the test set.

Remark 10 Since we are facing a worst-case (but oblivious) adversary, one may wonder whether
randomization might be beneficial in SCCCC or CCCC. We answer in the affermative as follows.
The randomized version of SCCCC is SCCCC where the following two steps are randomized: (i) The
initial spanning tree T (Line 1 in Figure 2) is drawn at random according to a given distribution
D over the spanning trees of G. (ii) The queried edge selected from each sheaf Ek returned by
calling EDGEPARTITION (Line 7 in Figure 2) is chosen uniformly at random among all edges in
Ek. Because the adversarial labeling is oblivious to the query set selection, the mistake bound of
this randomized SCCCC can be shown to be the sum of the expected loads of each δ-edge, which
can be bounded by O

�
∆2(Y)max{1, ρPmax

D
�
|EG|− |VG|+ 1}

�
, where P

max
D is the maximal

over all probabilities of including edges (i, j) ∈ E in T . When T is a uniformly generated random
spanning tree (Lyons and Peres, 2009), and ρ is a constant (i.e., the test set is a constant fraction
of the query set) this implies optimality up to a factor kρ (compare to Theorem 7) on any graph
where the effective resistance (Lyons and Peres, 2009) between any pair of adjacent nodes in G is
O
�
k/|V |

�
—for instance, a very dense clique-like graph. One could also extend this result to CCCC,

but this makes it harder to select the parameters of SCCCC within CCCC.

We conclude with some remarks on the time/space requirements for the two algorithms SC-
CCC and CCCC, details will be given in the full version of this paper. The amortized time per
prediction required by SCCCC(ρ,

�
|EG|− |VG|+ 1) and CCCC(ρ) is O

�
|VG|
√

|EG|
log |VG|

�
and

34.11

CESA-BIANCHI GENTILE VITALE ZAPPELLA

O

��
|VG|
ρ log |VG|

�
, respectively, provided |C(G)| = Ω(|EG|) and ρ ≤

�
|VG|. For instance,

when the input graph G = (VG, EG) has a quadratic number of edges, SCCCC has an amortized
time per prediction which is only logarithmic in |VG|. In all cases, both algorithms need linear
space in the size of the input graph. In addition, each do-while loop execution within CCCC can be
run in parallel.

5. Conclusions and ongoing research

In this paper we initiated a rigorous study of link classification in signed graphs. Motivated by
social balance theory, we adopted the correlation clustering index as a natural regularity measure
for the problem. We proved upper and lower bounds on the number of prediction mistakes in
three fundamental transductive learning models: online, batch and active. Our main algorithmic
contribution is for the active model, where we introduced a new family of algorithms based on
the notion of circuit covering. Our algorithms are efficient, relatively easy to implement, and have
mistake bounds that hold on any signed graph. We are currently working on extensions of our
techniques based on recursive decompositions of the input graph. Experiments on social network
datasets are also in progress.

References

A Blum, N. Bansal, and S. Chawla. Correlation clustering. Machine Learning Journal, 56(1/3):
89–113, 2004.

B. Bollobas. Combinatorics. Cambridge University Press, 1986.

D. Cartwright and F. Harary. Structure balance: A generalization of Heider’s theory. Psychological
review, 63(5):277–293, 1956.

N. Cesa-Bianchi, C. Gentile, and F. Vitale. Fast and optimal prediction of a labeled tree. In Pro-
ceedings of the 22nd Annual Conference on Learning Theory. Omnipress, 2009.

N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella. Random spanning trees and the prediction
of weighted graphs. In Proceedings of the 27th International Conference on Machine Learning.
Omnipress, 2010.

K. Chiang, N. Natarajan, A. Tewari, and I. Dhillon. Exploiting longer cycles for link prediction in
signed networks. In Proceedings of the 20th ACM Conference on Information and Knowledge
Management (CIKM). ACM, 2011.

E.D. Demaine, D. Emanuel, A. Fiat, and N. Immorlica. Correlation clustering in general weighted
graphs. Theoretical Computer Science, 361(2-3):172–187, 2006.

R. El-Yaniv and D. Pechyony. Transductive rademacher complexity and its applications. Journal of
Artificial Intelligence Research, 35(1):193–234, 2009.

M. Elkin, Y. Emek, D.A. Spielman, and S.-H. Teng. Lower-stretch spanning trees. SIAM Journal
on Computing, 38(2):608–628, 2010.

34.12

A CORRELATION CLUSTERING APPROACH TO LINK CLASSIFICATION

G. Facchetti, G. Iacono, and C. Altafini. Computing global structural balance in large-scale signed
social networks. PNAS, 2011.

I. Giotis and V. Guruswami. Correlation clustering with a fixed number of clusters. In Proceedings
of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1167–1176.
ACM, 2006.

R. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of trust and distrust. In Proceedings
of the 13th international conference on World Wide Web, pages 403–412. ACM, 2004.

F. Harary. On the notion of balance of a signed graph. Michigan Mathematical Journal, 2(2):
143–146, 1953.

F. Heider. Attitude and cognitive organization. J. Psychol, 21:107–122, 1946.

M. Herbster and M. Pontil. Prediction on a graph with the Perceptron. In Advances in Neural
Information Processing Systems 21, pages 577–584. MIT Press, 2007.

Y.P. Hou. Bounds for the least Laplacian eigenvalue of a signed graph. Acta Mathematica Sinica,
21(4):955–960, 2005.

J. Kunegis, A. Lommatzsch, and C. Bauckhage. The Slashdot Zoo: Mining a social network with
negative edges. In Proceedings of the 18th International Conference on World Wide Web, pages
741–750. ACM, 2009.

J. Leskovec, D. Huttenlocher, and J. Kleinberg. Signed networks in social media. In Proceedings of
the 28th International Conference on Human Factors in Computing Systems, pages 1361–1370.
ACM, 2010a.

J. Leskovec, D. Huttenlocher, and J. Kleinberg. Predicting positive and negative links in online
social networks. In Proceedings of the 19th International Conference on World Wide Web, pages
641–650. ACM, 2010b.

N. Littlestone. Mistake Bounds and Logarithmic Linear-threshold Learning Algorithms. PhD thesis,
University of California at Santa Cruz, 1989.

N. Littlestone and M.K. Warmuth. The weighted majority algorithm. Information and Computation,
108:212–261, 1994.

R. Lyons and Y. Peres. Probability on trees and networks. Manuscript, 2009.

U. Von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416, 2007.

Appendix A. Proofs

Proof [Lemma 2] The edge set of a clique G = (V,E) can be decomposed into edge-disjoint
triangles if and only if there exists an integer k ≥ 0 such that |V | = 6k + 1 or |V | = 6k + 3
—see, e.g., page 113 of (Bollobas, 1986). This implies that for any clique G we can find a
subgraph G

� = (V �
, E

�) such that G� is a clique, |V �| ≥ |V | − 3, and E
� can be decomposed

34.13

CESA-BIANCHI GENTILE VITALE ZAPPELLA

into edge-disjoint triangles. As a consequence, we can find K edge-disjoint triangles among the
1
3 |E

�| = 1
6 |V

�|(|V �| − 1) ≥ 1
6(|V | − 3)(|V | − 4) edge-disjoint triangles of G�, and label one edge

(chosen arbitrarily) of each triangle with −1, all the remaining |E| −K edges of G being labeled
+1. Since the elimination of the K edges labeled −1 implies the elimination of all bad cycles, we
have ∆(Y) ≤ K. Finally, since ∆(Y) is also lower bounded by the number of edge-disjoint bad
cycles, we also have ∆(Y) ≥ K.

Proof [Theorem 3] We start by proving the lower bound for an arbitrary graph G. The adversary
first queries the edges of a spanning tree of G forcing a mistake at each step. Then there exists a
labeling of the remaining edges such that the overall labeling Y satisfies ∆(Y) = 0. This is done
as follows. We partition the set of nodes V into clusters such that each pair of nodes in the same
cluster is connected by a path of positive edges on the tree. Then we label +1 all non-tree edges that
are incident to nodes in the same cluster, and label −1 all non-tree edges that are incident to nodes
in different clusters. Note that in both cases no bad cycles are created, thus ∆(Y) = 0. After this
first phase, the adversary can force additional K mistakes by querying K arbitrary non-tree edges
and forcing a mistake at each step. Let Y � be the final labeling. Since we started from Y such that
∆(Y) = 0 and at most K edges have been flipped, it must be the case that ∆(Y �) ≤ K.

Next, we prove the stronger lower bound when G is a clique. If K ≥
|V |
8 we have |V | +K ≥

|V |+K

�
log2

|V |
K − 2

�
, so one can prove the statement just by resorting to the adversarial strategy

in the proof of the previous case (when G is an arbitrary graph). Hence, we continue by assuming
K <

|V |
8 . We first show that on a special kind of graph G

� = (V �
, E

�), whose labels Y � are partially
revealed, any algorithm can be forced to make at least log2 |V �| mistakes with ∆(Y �) = 1. Then we
show (Phase 1) how to force |V |−1 mistakes on G while maintaining ∆(Y) = 0, and (Phase 2) how
to extract from the input graph G, consistently with the labels revealed in Phase 1, K edge-disjoint
copies of G�. The creation of each of these subgraphs, which contain |V �| = 2�log2(|V |/(2K))� nodes,
contributes

�
log2

|V �|
2K

�
≥ log2

|V |
K −2 additional mistakes. In Phase 2 the value of ∆(Y) is increased

by one for each copy of G� extracted from G.
Let d(i, j) be the distance between node i and node j in the graph under consideration, i.e., the

number of edges in the shortest path connecting i to j. The graph G
� = (V �

, E
�) is constructed as

follows. The number of nodes |V �| is a power of 2. G� contains a cycle graph C having |V �| edges,
together with |V �|/2 additional edges. Each of these additional edges connects the |V �|/2 pairs of
nodes {i0, j0}, {i1, j1}, . . . of V � such that, for all indices k ≥ 0, the distance d(ik, jk) calculated on
C is equal to |V �|/2. We say that ik and jk are opposite to one another. One edge of C, say (i0, i1), is
labeled −1, all the remaining |V �|−1 in C are labeled +1. All other edges of G�, which connect op-
posite nodes, are unlabeled. We number the nodes of V � as i0, i1, . . . , i|V �|/2−1, j0, j1, . . . , j|V �|/2−1

in such a way that, on the cycle graph C, ik and jk are adjacent to ik−1 and jk−1, respectively, for
all indices k ≥ 0. With the labels assigned so far we clearly have ∆(Y �) = 1.

We now show how the adversary can force log2 |V
�| mistakes upon revealing the unassigned

labels, without increasing the value of ∆(Y �). The basic idea is to have a version space S
� of G�,

and halve it at each mistake of the algorithm. Since each edge of C can be the (unique) δ-edge,7 we
initially have |S�| = |V �|. The adversary forces the first mistake on edge (i0, j0), just by assigning
a label which is different from the one predicted by the algorithm. If the assigned label is +1 then

7. Here a δ-edge is a labeled edge contributing to ∆(Y).

34.14

A CORRELATION CLUSTERING APPROACH TO LINK CLASSIFICATION

the δ-edge is constrained to be along the path of C connecting i0 to j0 via i1, otherwise it must
be along the other path of C connecting i0 to j0. Let now L be the line graph including all edges
that can be the δ-edge at this stage, and u be the node in the ”middle” of L, (i.e., u is equidistant
from the two terminal nodes). The adversary forces a second mistake by asking for the label of the
edge connecting u to its opposite node. If the assigned label is +1 then the δ-edge is constrained
to be on the half of L which is closest to i0, otherwise it must be on the other half. Proceeding
this way, the adversary forces log2 |V

�| mistakes without increasing the value of ∆(Y �). Finally,
the adversary can assign all the remaining |V �|/2− log2 |V

�| labels in such a way that the value of
∆(Y �) does not increase. Indeed, after the last forced mistake we have |S�| = 1, and the δ-edge is
completely determined. All nodes of the labeled graph obtained by flipping the label of the δ-edge
can be partitioned into clusters such that each pair of nodes in the same cluster is connected by a
path of +1-labeled edges. Hence the adversary can label all edges in the same cluster with +1 and
all edges connecting nodes in different clusters with −1. Clearly, dropping the δ-edge resulting
from the dichotomic procedure also removes all bad cycles from G

�.

Phase 1. Let now H be any Hamiltonian path in G. In this phase, the labels of the edges in H

are presented to the learner, and one mistake per edge is forced, i.e., a total of |V | − 1 mistakes.
According to the assigned labels, the nodes in V can be partitioned into two clusters such that any
pair of nodes in each cluster are connected by a path in H containing an even number of −1-labeled
edges.8 Let now V0 be the larger cluster and v1 be one of the two terminal nodes of H . We number
the nodes of V0 as v1, v2, . . . , in such a way that vk is the k-th node closest to v1 on H . Clearly, all
edges (vk, vk+1) either have been labeled +1 in this phase or are unlabeled. For all indices k ≥ 0,
the adversary assigns each unlabeled edge (vk, vk+1) of G a +1 label. Note that, at this stage, no
bad cycles are created, since the edges just labeled are connected through a path containing two −1
edges.

Phase 2. Let H0 be the line graph containing all nodes of V0 and all edges incident to these nodes
that have been labeled so far. Observe that all edges in H0 are +1. Since |V0| ≥ |V |/2, H0 must
contain a set of K edge-disjoint line graphs having 2�log2(|V |/(2∆))� edges. The adversary then
assigns label −1 to all edges of G connecting the two terminal nodes of these sub-line graphs.
Consider now all the cycle graphs formed by all node sets of the K sub-line graphs created in the
last step, together with the −1 edges linking the two terminal nodes of each sub-line graph. Each
of these cycle graphs has a number of nodes which is a power of 2. Moreover, only one edge is −1,
all remaining ones being +1. Since no edge connecting the nodes of the cycles has been assigned
yet, the adversary can use the same dichotomic technique as above to force, for each cycle graph,�
log2

|V |
2K

�
additional mistakes without increasing the value of ∆(Y).

Proof [Theorem 4] We first claim that the following bound on the version space size holds:

log2 |S
∗
| < d

∗ log2
e|E|

d∗
+ |V | log2

|V |

ln(|V |+ 1)
.

To prove this claim, observe that each element of S∗ is uniquely identified by a partition of V and
a choice of d

∗ edges in E. Let Bn (the Bell number) be the number of partitions of a set of n

8. In the special case when there is only one cluster, we can think of the second cluster as the empty set.

34.15

CESA-BIANCHI GENTILE VITALE ZAPPELLA

elements. Then |S∗| ≤ B|V | ×
�|E|
d∗
�
. Using the upper bound Bn <

�
n

ln(n+1)

�n
and standard

binomial inequalities yields the claimed bound on the version space size.
Given the above, the mistake bound of the resulting algorithm is an easy consequence of the

known mistake bounds for Weighted Majority.

Proof [Theorem 5, sketch] We start by showing that the Halving algorithm is able to solve UCC by
building a reduction from UCC to link classification. Given an instance of (G, Y) of UCC, let the
supergraph G

� = (V �
, E

�) be defined as follows: introduce G
�� = (V ��

, E
��), a copy of G, and let

V
� = V ∪ V

��. Then connect each node i�� ∈ V
�� to the corresponding node i ∈ V , add the resulting

edge (i, i��) to E
�, and label it with +1. Then add to E

� all edges in E, retaining their labels. Since
the optimal clustering of (G, Y) is unique, there exists only one assignment Y �� to the labels of
E

�� ⊂ E
� such that ∆(Y �) = ∆(Y). This is the labeling consistent with the optimal clustering C∗ of

(G, Y): each edge (i��, j��) ∈ E
�� is labeled +1 if the corresponding edge (i, j) ∈ E connects two

nodes contained in the same cluster of C∗, and −1 otherwise. Clearly, if we can classify correctly
the edges of E��, then the optimal clustering C∗ is recovered. In order to do so, we run HALd on
G

�� with increasing values of d starting from d = 0. For each value of d, we feed all edges of G��

to HALd and check whether the number z of edges (i��, j��) ∈ E
�� for which the predicted label is

different from the one of the corresponding edge (i, j) ∈ E, is equal to d. If it does not, we increase
d by one and repeat. The smallest value d

∗ of d for which z is equal to d must be the true value
of ∆(Y �). Indeed, for all d < d

∗ Halving cannot find a labeling of G� with cost d. Then, we run
HALd∗ on G

� and feed each edge of E��. After each prediction we reset the algorithm. Since the
assignment Y �� is unique, there is only one labeling (the correct one) in the version space. Hence
the predictions of HALd∗ are all correct, revealing the optimal clustering C∗. The proof is concluded
by constructing the series of reductions

Unique Maximum Clique → Vertex Cover → Multicut → Correlation Clustering,

where the initial problem in this chain is known not to be solvable in polynomial time, unless
RP = NP.

Proof [Theorem 6] First, by a straightforward combination of (El-Yaniv and Pechyony, 2009, Re-
mark 2) and the union bound, we have the following uniform convergence result for the class P:
With probability at least 1− δ, uniformly over f ∈ P , it holds that

1

u
∆u(f) ≤

1

m
∆m(f) + c

��
1

m
+

1

u

��
|V | ln |V |+ ln

1

δ

�
(4)

where c is a suitable constant. Then, we let f∗ ∈ P be the partition that achieves ∆m+u(f∗) = ∆.
By applying (El-Yaniv and Pechyony, 2009, Remark 3) we obtain that

1

m
∆m(�f) ≤ κ

m
∆m(f∗) ≤

κ

m+ u
∆m+u(f

∗) + c
�
κ

�
u/m

m+ u
ln

2

δ

with probability at least 1− δ
2 . An application of (4) concludes the proof.

34.16

A CORRELATION CLUSTERING APPROACH TO LINK CLASSIFICATION

Proof [Theorem 7] Let Y be the following randomized labeling: All edges are labeled +1, except
for a pool of K edges, selected uniformly at random, and whose labels are set randomly. Since the
size of the training set chosen by A is not larger than α|E|, the test set will contain in expectation
at least (1 − α)K randomly labeled edges. Algorithm A makes in expectation 1/2 mistakes on
every such edge. Now, if we delete the edges with random labels we obtain a graph with all positive
labels, which immediately implies ∆2(Y) ≤ K.

Proof [Theorem 8] We start from (3) and take expectations. We have

EMT ≤ p|E|+
�

e�∈E\ET

�

e∈E
I
�
e ∈ PathT (e

�)
�
P
�
e ∈ Eflip

�

= p|E|+ p

�

e�∈E\ET

��PathT (e�)
��

= p|E|+ p|E|×O
�
log2 |V | log log |V |

�

= p|E|×O
�
log2 |V | log log |V |

�

as claimed.

Appendix B. Additional figures, lemmas and proofs from Section 4

Lemma 11 Let T � be any subtree of T , rooted at (an arbitrary) vertex ir ∈ VT � . If for any node
v ∈ VT � we have |EG(T �

v, T
�)| ≤ θ, then TREEPARTITION(T �

, G, θ) returns T
� itself; otherwise,

TREEPARTITION(T �
, G, θ) returns a proper subtree T

�
j ⊂ T

� satisfying

(i) |EG(T �
v, T

�)| ≤ θ for each node v �≡ j in VT �
j
, and

(ii) |EG(T �
j , T

�)| ≥ θ.

Proof The proof immediately follows from the definition of TREEPARTITION(T �
, G, θ). If

|EG(T �
v, T

�)| ≤ θ holds for each node v ∈ VT � , then TREEPARTITION(T �
, G, θ) stops only after

all nodes of VT � have been visited, therefore returning the whole input tree T
�. On the other hand,

when |EG(T �
v, T

�)| ≤ θ does not hold for each node v ∈ VT � , TREEPARTITION(T �
, G, θ) returns a

proper subtree T �
j ⊂ T

� and, by the very way this subroutine works, we must have |EG(T �
j , T

�)| ≥ θ.
This proves (ii). In order to prove (i), assume, for the sake of contradiction, that there exists a node
v �≡ j of VT �

j
such that |EG(T �

v, T
�)| > θ. Since v is a descendent of j, the last time when v gets

visited precedes the last time when j does, thereby implying that TREEPARTITION would stop at
some node z of VT �

v
, which would make TREEPARTITION(T �

, G, θ) return T
�
z instead of T �

j .

Let C(T �
q, T

�
, G, ρ) ⊆ C(G) be the set of circuits used during the prediction phase that have been

obtained thorugh the sheaves {E1, E2, . . .} returned by EDGEPARTITION(T �
q, T

�
, G, ρ). The fol-

lowing lemma quantifies the resulting load increase of the edges in ET � \ ET �
q
.

Lemma 12 Let T � be any subtree of T , rooted at (an arbitrary) vertex ir ∈ VT � . Then the load
increase of each edge in ET � \ ET �

q
resulting from using at prediction time the circuits contained in

C(T �
q, T

�
, G, ρ) is O(ρ).

34.17

CESA-BIANCHI GENTILE VITALE ZAPPELLA

!"

#$%

&

'

(

)

*

+

,

-

.

&/

&&

&'

&(

&)

&*

&+

&,

(

'

)

*
,

& +

-

%

#$

Figure 4: An illustration of how EDGEPARTITION operates and how the SCCCC prediction rule uses the
output of EDGEPARTITION. Notation is as in the main text. In this example, EDGEPARTITION is invoked
with parameters T �

q, T
�
, G, 3. The nodes in VT �

q
are grey. The edges of ET � are thick black. A depth-first visit

starting from ir is performed, and each node is numbered according to the usual visit order. Let i1, i2, . . . be
the nodes in VT � \ VT �

q
(the white nodes), and j1, j2, . . . be the nodes of VT �

q
(the gray nodes). The depth-

first visit on the nodes induces an ordering on the 8 edges of EG(T �
q, T

�) (i.e., the edges connecting grey
nodes to white nodes), where (i1, j1) precedes (i2, j2) if i1 is visited before i2, being i1, i2, . . . and j1, j2, . . .

belonging to VT �\T �
q

and VT �
q

respectively. The numbers tagging the edges of EG(T �
q, T

�) denote a possible
edge ordering. In the special case when two or more edges are incident to the same white node, the relative
order for this edge subset is arbitrary. This way of ordering edges is then used by EDGEPARTITION for
building the partition. Since ρ = 3, EDGEPARTITION partitions EG(T �

q, T
�) in 8/(3 + 1) = 2 sheaves, the

first one containing edges tagged 1, 2, 3, 4 and the second one with edges 5, 6, 7, 8. Finally, from each sheaf
an arbitrary edge is queried. A possible selection, shown by grey shaded edges, is edge 1 for the first sheaf
and edge 5 for the second one. The remaining edges are assigned to the test set. For example, during the
prediction phase, test edge (19, 26) is predicted as Ŷ19,26 ← Y19,7Y7,24Y24,25Y25,26, where Y19,7, Y24,25, and
Y25,26 are available since they belong to the initial spanning tree T

�.

Proof Fix a sheaf E� and any circuit C ∈ C(T �
q, T

�
, G, ρ) containing the unique queried edge of

E
�, and C

� be the part of C that belongs to T
� \ T

�
q. We know that the edges of C � are potentially

loaded by all circuits needed to cover the sheaf, which are O(ρ). We now check that no more than
O(ρ) additional circuits use those edges. Consider the line graph L created by the depth first visit
of T starting from ir. Each time an edge (i, j) is traversed (even in a backtracking step), the edge is
appended to L, and j becomes the new terminal node of L. Hence, each backtracking step generates
in L at most one duplicate of each edge in T , while the nodes in T may be duplicated several times
in L. Let imin and imax be the nodes of VT �

q
\VT � incident to the first and the last edge, respectively,

assigned to sheaf E� during the visit of T , where the order is meant to be chronological. Let �min

and �max be the first occurrence of imin and imax in L, respectively, when traversing L from the
first node inserted. Let L� be the sub-line of L having �min and �max as terminal nodes. By the way
EDGEPARTITION is defined, all edges of C � that are loaded by circuits covering E

� must also occur
in L

�. Since each edge of T occurs at most twice in L, each edge of C � belongs to L
� and to at most

another sub-line L
�� of L associated with a different sheaf E��. Hence the overall load of each edge

in C
� is O(ρ).

We are now ready to bound the number of mistakes made when SCCCC is run on any labeled graph
(G, Y).

34.18

A CORRELATION CLUSTERING APPROACH TO LINK CLASSIFICATION

Lemma 13 The load of each queried edge selected by running SCCCC(ρ, θ) on any labeled graph
(G = (VG, EG), Y) is O

�
ρ

�
|EG|−|VG|+1

θ + θ

��
.

Proof In the proof we often refer to the line numbers of the pseudocode in Figure 2. We start by
observing that the subtrees returned by the calls to TREEPARTITION are disjoint (each Tq is removed
from T in line 10). This entails that EDGEPARTITION is called on disjoint subsets of EG, which
in turn implies that the sheaves returned by calls to EDGEPARTITION are also disjoint. Hence, for
each training edge (i, j) ∈ EG \ET (i.e., selected in line 7), we have Li,j = O(ρ). This is because
the number of circuits in C(G) that include (i, j) is equal to the cardinality of the sheaf to which
(i, j) belongs (lines 8 and 9).

We now analyze the load Lv,w of each edge (v, w) ∈ ET . This quantity can be viewed as the
sum of three distinct load contributions: Lv,w = L

�
v,w + L

��
v,w + L

���
v,w. The first term L

�
v,w accounts

for the load created in line 4, when v and w belong to the same subtree Tq returned by calling
TREEPARTITION in line 3. The other two terms L��

v,w and L
���
v,w take into account the load created in

line 9, when either v and w both belong (L��
v,w) or do not belong (L���

v,w) to the subtree Tq returned
in line 3.

Assume now that both v and w belong to VTq with Tq returned in line 3. Without loss of
generality, let v be the parent of w in T . The load contribution L

�
v,w deriving from the circuits

in C(G) that are meant to cover the test edges joining pairs of nodes of Tq (line 4) must then be
bounded by |EG(Tw, Tq)|. This quantity can in turn be bounded by θ using part (i) of Lemma 11.
Hence, we must have L

�
v,w ≤ θ.

Observe now that L��
v,w may increase by one each time line 9 is executed. This is at most

O(ρ) × |EG(Tw, Tq)|. Since |EG(Tw, Tq)| ≤ θ by part (i) of Lemma 11, we must have L
��
v,w =

O(ρθ).
We finally bound the load contribution L

���
v,w. As we said, this refers to the load created in

line 9 when neither v nor w belong to subtree Tq returned in line 3. Lemma 12 ensures that,
for each call of EDGEPARTITION, L���

v,w gets increased by O(ρ). We then bound the number of
times when EDGEPARTITION may be called. Observe that |EG(Tq, T)| ≥ θ for each subtree Tq

returned by TREEPARTITION. Hence, because different calls to EDGEPARTITION operate on dis-
joint edge subsets, the number of calls to EDGEPARTITION must be bounded by the number of
calls to TREEPARTITION. The latter cannot be larger than |EG|−|VG|+1

θ which, in turn, implies
L
���
v,w = O

�
ρ
θ (|EG|− |VG|+ 1)

�
.

Combining together, we find that

Lv,w = L
�
v,w + L

��
v,w + L

���
v,w = O

�
θ + ρθ +

ρ

θ
(|EG|− |VG|+ 1)

�

thereby concluding the proof.

The value of threshold θ that minimizes the above upper bound is θ =
�
|EG|− |VG|+ 1, as

exploited next.

Lemma 14 The number of mistakes made by SCCCC(ρ,
�
|EG|− |VG|+ 1) on a labeled graph

(G = (VG, EG), Y) is O
�
∆2(Y) ρ

�
|EG|− |VG|+ 1

�
, while we have |C(G)|

Q−|VG|+1 ≥ ρ, where Q is
the size of the chosen query set (excluding the initial |VG| − 1 labels), and |C(G)| is the size of the
test set.

34.19

CESA-BIANCHI GENTILE VITALE ZAPPELLA

Proof The condition |C(G)|
Q−|VG|+1 ≥ ρ immediately follows from:

(i) the very definition of EDGEPARTITION, which selects one queried edge per sheaf, the cardi-
nality of each sheaf being not smaller than ρ+ 1, and

(ii) the very definition of SCCCC, which queries the labels of |VG| − 1 edges when drawing the
initial spanning tree T of G.

As for the mistake bound, recall that for each queried edge (i, j), the load Li,j of (i, j) is defined
to be the number of circuits of C(G) that include (i, j). As already pointed out, each δ-edge cannot
yield more mistakes than its load. Hence the claim simply follows from Lemma 13, and the chosen
value of θ.

Proof [Theorem 9] In order to prove the condition |C(G)|
Q ≥

ρ−3
3 , it suffices to consider that:

(i) a spanning forest containing at most |VG|− 1 queried edges is drawn at each execution of the
do-while loop in Figure 3, and

(ii) EDGEPARTITION queries one edge per sheaf, where the size of each sheaf is not smaller than
ρ + 1. Because |EG|

ρ|VG| + 1 bounds the number of do-while loop executions, we have that the
number of queried edges is bounded by

(|VG|− 1)
�
|EG|

ρ|VG|
+ 1

�
+

1

ρ+ 1

�
|EG|− (|VG|− 1)

�
|EG|

ρ|VG|
+ 1

��

≤
|EG|

ρ
+ |VG|+

|EG|

ρ

�
1−

|VG|− 1

ρ|VG|
−

|VG|− 1

|EG|

�

≤ |VG|+ 2
|EG|

ρ

≤ 3
|EG|

ρ

where in the last inequality we used ρ ≤
|EG|
|VG| . Hence |C(G)|

Q = |EG|−Q
Q ≥

ρ−3
3 , as claimed.

Let us now turn to the mistake bound. Let VG�� and EG�� denote the node and edge sets of the
connected components G�� of each subgraph G

� ⊆ G on which CCCC(ρ) invokes SCCCC(ρ,
√
E�).

By Lemma 13, we know that the load of each queried edge selected by SCCCC on G
�� is bounded by

O

�
ρ

�
|EG�� |− |VG�� |+ 1

√
E�

+
√
E�

��
= O(ρ

�
|E�|) = O

�
ρ

3
2

�
|VG|

�

the first equality deriving from |EG�� | − |VG�� | + 1 ≤ |E�|, and the second one from |E�| ≤ ρ|VG|

(line 3 of CCCC’s pseudocode).
In order to conclude the proof, we again use the fact that any δ-edge cannot originate more

mistakes than its load, along with the observation that the edge sets of the connected component
G

�� on which SCCCC is run are pairwise disjoint.

34.20

	Introduction
	Preliminaries
	Mistake bounds and risk analysis
	Online transductive learning
	Batch transductive learning

	Two-clustering and active learning
	Random labeling
	Adversarial labeling

	Conclusions and ongoing research
	Proofs
	Additional figures, lemmas and proofs from Section 4

