
Learning Unknown Graphs

Nicolò Cesa-Bianchi1, Claudio Gentile2, and Fabio Vitale3

1 Dipartimento di Scienze dell’Informazione
Università degli Studi di Milano, Italy

cesa-bianchi@dsi.unimi.it
2 Dipartimento di Informatica e Comunicazione

Università dell’Insubria, Varese, Italy
claudio.gentile@uninsubria.it

3 Dipartimento di Scienze dell’Informazione
Università degli Studi di Milano, Italy

fabio.vitale@unimi.it

Abstract. Motivated by a problem of targeted advertising in social net-
works, we introduce and study a new model of online learning on labeled
graphs where the graph is initially unknown, and the algorithm is free
to choose the next vertex to predict. After observing that natural non-
adaptive exploration/prediction strategies (like depth-first with majority
vote) badly fail on simple binary labeled graphs, we introduce an adap-
tive strategy that performs well under the hypothesis that the vertices
of the unknown graph (i.e., the members of the social network) can be
partitioned into a few well-separated clusters within which labels are
roughly constant (i.e., members in the same cluster tend to prefer the
same products). Our algorithm is efficiently implementable and provably
competitive against the best of these partitions.

Key words: online learning, graph prediction, unknown graph, cluster-
ing.

1 Introduction

Consider the advertising problem of targeting each member of a social network
(where ties between individuals indicate a certain degree of similarity in tastes
and interests) with the product he/she is most likely to buy. Unlike previous
approaches to this problem —see, e.g., [20]— we consider the more interesting
scenario where the network and the preferences of network members for the
products in a given set are initially unknown, apart from those of a single “seed
member”. We assume there exists a mechanism to explore the social network
by discovering new members connected (i.e., with similar interests) to members
that are already known. This mechanism can be implemented in different ways,
e.g., by providing incentives or rewards to members with undiscovered connec-
tions. Alternatively, if the network is hosted by a social network service (like
FacebookTM), the service provider itself may release the needed pieces of infor-
mation. Since each discovery of a new member is presumably costly, the goal of
the marketing strategy is to minimize the number of new members not being
offered their preferred product. In this respect the task may then be formulated

as the following sequential problem: At each step t find the member qt, among
those whose preferred product we already know, who is most likely to have
undiscovered connections that have the same preferred product as qt. Once this
member qt is identified, we obtain (through the above-mentioned mechanism)
a connection it to whom we may advertise qt’s preferred product. In order to
make the problem easier for the advertising agent, we make the simplifying as-
sumption that once a product is advertised to a member the agent may observe
the member’s true preference, and thus know whether the decision made was
optimal.

This social network advertising task can be naturally cast as a graph pre-
diction problem where an agent sequentially explores the vertices and edges of
an unknown graph with unknown labels (i.e., product preferences) assigned to
its vertices. The online exploration proceeds as follows: At each time step t, the
agent selects a known node qt having unexplored edges, receives a new vertex
it adjacent to qt, and is required to output a prediction ŷt for the (unknown)
label yt associated with it. Then yt is revealed, and the algorithm incurs a loss
!(ŷt, yt) measuring the discrepancy between prediction and true label. Thus, in
some sense, the agent is learning to explore the graph along directions that, given
past observations, look easier to predict. Our basic measure of performance is the
agent’s cumulative loss !(ŷ1, y1)+ · · ·+!(ŷn, yn) over a sequence of n predictions.

In order to leverage on the assumption that connected members tend to
prefer the same products [20], we design agent strategies that perform well to
the extent that the underlying graph labeling y = (y1, . . . , yn) is regular. That
is, the graph can be partitioned into a small number of weakly interconnected
clusters (subgroups of network members) such that labels in each cluster are
all roughly similar. In the case of binary labels and zero-one loss, a common
measure of label regularity for an n-vertex graph G with labels y = (y1, . . . , yn) ∈
{−1, +1}n is the cutsize ΦG(y). This is the number of edges (i, j) in G whose
endpoints vertices have disagreeing labels, yi #= yj . The cumulative loss bound
we prove in this paper holds for general (real-valued) labels and is expressed
in terms of a measure of regularity that, in the special case of binary labels, is
often significantly smaller than the cutsize ΦG(y), and never larger than 2ΦG(y).
Furthermore, unlike ΦG(y), which may be even quadratic in the number of nodes,
our measure of label regularity is never vacuous (i.e., it is never larger than n).
In the paper we also show that the algorithm achieving this bound is suitable
to large scale applications because of its small time and memory requirements.

1.1 Related Work

Online prediction of labeled graphs has been also studied in a “transductive”
learning model, different from the one studied here. In this model the graph G
(without labels) is known in advance, and the task is to sequentially predict
the unknown labels of an adversarially chosen permutation of G’s vertices. A
technique proposed in [10] for transductive binary prediction is to embed the
graph into a linear space using the kernel defined by the Laplacian pseudoin-
verse —see [16, 19], and then run the standard (kernel) Perceptron algorithm
for predicting the vertex labels. This approach guarantees that the number of

mistakes is bounded by a quantity that depends linearly on the cutsize ΦG(y).
Further results involving the prediction of node labels in graphs with known
structure include [2, 3, 6, 9, 11, 12, 13, 14, 15, 17].

Our exploration/prediction model also bears some similarities to the graph
exploration problem introduced in [8], where the measure of performance is the
overall number edge traversals sufficient to ensure that each edge has been tra-
versed at least once. Unlike that approach, we do not charge any cost for visits
of the same node beyond the first visit. Moreover, in our setting depth-first
exploration performs badly on simple graphs with binary labels (see discus-
sion in Sect. 2), whereas depth-first traversal is optimal in the setting of [8]
for any undirected graph —see [1]. Finally, as we explain in Sect. 3, our ex-
ploration/prediction algorithm incrementally builds a spanning tree whose total
cost is equal to the algorithm’s cumulative loss. The problem of constructing a
minimum spanning tree online is also considered in [18], although only for graphs
with random edge costs.

2 The Exploration/Prediction Model
Let G = (V, E) be an unknown undirected and connected graph with vertex set
V = {1, 2, . . . , n} and edge set E ⊆ V × V . We use y = (y1, . . . , yn) ∈ Yn to
denote an unknown assignment of labels yi ∈ Y to the vertices i ∈ V , where Y
is a given label space, e.g., Y = R or Y = {−1, +1}.

We consider the following protocol between a graph exploration/prediction
algorithm and an adversary. Initially, the algorithm receives an arbitrary vertex
i0 ∈ V and its corresponding label y0. For all subsequent steps t = 1, . . . , n − 1,
let Vt−1 ⊆ V be the set of vertices visited in the first t − 1 steps, where we
conventionally set V0 = {i0}. Then:

1. The algorithm chooses node qt ∈ Vt−1; at this time the algorithm knows
that qt has unexplored edges (i.e., edges connecting qt to unseen nodes in
V \ Vt−1), though the number and destination of such edges is currently
unknown to the algorithm.

2. The adversary chooses a node it ∈ V \ Vt−1 that is adjacent to qt;
3. All edges (it, j) ∈ E connecting it to previously visited vertices j ∈ Vt−1 are

revealed (including edge (qt, it));
4. The algorithm predicts the label yt of it with ŷt;
5. The label yt is revealed, and the algorithm incurs a loss.

At each step t = 1, . . . , n − 1, the loss of the algorithm is !(ŷt, yt), where ! :
Y × Y → R+ is a fixed and known function measuring the discrepancy between
ŷt and yt. For example, if Y = R, then we may set !(ŷt, yt) = |ŷt − yt|. The
algorithm’s goal is to minimize its cumulative loss !(ŷ1, y1) + · · · + !(ŷn, yn).
Note that the edges (qt, it), for t = 1, . . . , n − 1, form a spanning tree for G.

It is important to note that standard nonadaptive graph exploration strate-
gies (combined with simple prediction rules) are suboptimal in this setting. For
this purpose, consider the strategy depthFirst, performing a depth-first visit
of G (partially driven by the adversarial choice of it) and predicting the label of
it through the adjacent node qt in the spanning tree generated by the visit. In

the binary classification case, when Y = {−1, +1} and !(ŷ, y) = I{by "=y} (zero-one
loss), the graph cutsize ΦG(y) is an obvious mistake bound achieved by such a
strategy. Figure 1 shows an example where depthFirst makes Ω

(
|V |

)
mistakes.

This high number of mistakes is not due to the choice of the prediction rule. In-
deed, the same large number of mistakes is achieved by variants of depthFirst

where the predicted label is determined by the majority vote of all labels (or
just of the mistaken ones) among the adjacent nodes seen so far. This holds even
when the graph labeling is consistent with the majority vote predictor based on
the entire graph. Similar examples can be constructed to show that visiting the
graph in breadth-first order can cause Ω

(
|V |

)
mistakes.

Fig. 1. A binary labeled graph with three clusters where depthFirst can make Ω
`

|V |
´

mistakes. Edges are either arrow edges or grey edges. Arrow edges indicate predictions,
and numbers on such edges denote the adversarial order of presentation. For instance
edge 3 (connecting a −1 node to a +1 node) says that depthFirst uses the −1 label
associated with the start node (the current qt node) to predict the +1 label associated
with the end node (the current it node). As a matter of fact, in this example depth-

First could also predict yt through a majority vote of the labels of previously observed
nodes that are adjacent to it. Dark grey nodes are the mistaken nodes (for simplicity,
ties are mistakes in this figure). Notice that in the dotted area we could add as many
(mistaken) nodes as we like, thus making the graph cutsize ΦG(y) arbitrarily close to
|V |. These nodes would still be mistaken even if the majority vote were restricted to
previously mistaken (and adjacent) nodes. This is because depthFirst is forced to err
on the left-most node of the right-most cluster.

These algorithms fail mainly because their exploration strategy is oblivious to
the sequence of revealed labels. Next, we show an adaptive exploration strategy
that takes advantage of the revealed structure of the labeled graph in order to
make a substantially smaller number of mistakes. Our algorithm cga (Clustered
Graph Algorithm) learns the next “good” node qt ∈ Vt−1 to explore, and achieves
a cumulative loss bound based on a notion of cluster/labeling regularity called
merging degree. This notion arises naturally as a by-product of our analysis, and
can be considered a natural measure of cluster similarity of independent interest.

3 Regular Partitions and the Clustered Graph Algorithm
We are interested in designing exploration/prediction strategies that work well
to the extent the underlying graph G can be partitioned into a small number

of weakly connected regions (the “clusters”) such that labels on the vertices in
each cluster are similar. Before defining this property formally, we need a few
key auxiliary definitions.

Given a path s1, . . . , sd in G, a notion of path length λ(s1, . . . , sd) can be
defined which is naturally related to the prediction loss. A reasonable choice
might be λ(s1, . . . , sd) = maxk=2,...,d !(sk−1, sk), where we conventionally write
!(st−1, st) instead of !(yst−1 , yst) when the labeling is understood from the con-
text. Note that, in the binary classification case, if the nodes s1, . . . , sd are either
all positive or all negative, then λ(s1, . . . , sd) = 0. In general, we say that λ is a
path length assignment if it satisfies

λ(s1, . . . , sd−1, sd) ≥ λ(s1, . . . , sd−1) ≥ 0 (1)

for each path s1, . . . , sd−1, sd in G. As we see in Sect. 5, condition (1) helps in
designing efficient algorithms.

Given a path length assignment λ, denote by Pt(i, j) the set of all paths
connecting node i to node j in Gt = (Vt, Et), the subgraph containing all nodes
Vt and edges Et that have been observed during the first t steps. The distance
dt(i, j) between i and j is the length of the shortest path between i and j in Gt,
i.e., dt(i, j) = minπ∈Pt(i,j) λ(π). A partition P of V in subsets (or clusters) C
is regular if, for all C ∈ P and for all i ∈ C, maxj∈C d(i, j) < mink "∈C d(i, k),
where d(i, j), without subscript, denotes the length of the shortest path between
i and j in the whole graph G. See Fig. 2 for an example.

In a regular partition each node is closer to every node in its cluster than to
any other node outside. When −d(·, ·) is taken as similarity function, our notion
of regular partition becomes equivalent to the Apresjan clusters in [4] and to
the strict separation property of [5]. It is easy to see that according to (1) all
subgraphs induced by the clusters on a regular partition are connected graphs.

Note that every labeled graph G = (V, E) has at least two regular partitions,
since both the trivial partitions P = {V } and P =

{
{1}, {2}, . . . , {|V |}

}
are

regular. Moreover, if labels are binary then the notion of regular partition is
equivalent to the natural partition made up of the smallest number of clusters
C, each one including only nodes with the same label.

We now introduce an algorithm, cga, that takes advantage of regular par-
titions. As we show in Sect. 4, the cumulative loss of cga can be expressed in
terms of the best regular partition of G with respect to the unknown labeling
y ∈ Rn.

At each time step t, cga sets ŷt to be the (known) label yqt of the selected
vertex qt ∈ Vt−1. Hence, the algorithm’s cumulative loss is the cost of the span-
ning tree with edges

{
(qt, it) : t = 1, . . . , |V | − 1

}
where edge (qt, it) has cost

!(i, j) = !(yi, yj). The key to controlling this cost, however, is the specific rule
the algorithm uses to select the next qt based on Gt−1. The approach we propose
is simple. If there exists a regular partition of G with few elements, then it does
not really matter how the spanning tree is built within each element, since the
cost of all these different trees will be small anyway. What matters the most
is the cost of the edges of the spanning tree that join two distinct elements of

5.4

5.2

5.6

5.1 0.1

0.7

0.9

2.9

3.1

3.8

3.9

3.2
3.6

3.5

4.0

5.4

5.2

5.6

5.1

d = 2.0
d = 0.4

0.1

0.7

0.9

d = 2.9
d = 0.8

2.9

3.1

3.8

3.9

3.2
3.6

3.5

4.0
d = 2.0
d = 0.8

Fig. 2. Two copies of a graph with real labels yi associated with each vertex i. On the
left, a shortest path connecting the two nodes enclosed in double circles is shown. The
path length is maxt #(sk−1, sk), where #(i, j) = |yi−yj |. The thick black edge is incident
to the nodes achieving the max in the path length expression. On the right, the vertices
of the same graph have been clustered to form a regular partition. The diameter of a
cluster C (the maximum of the pairwise distances between nodes of C) is denoted by
d. Similarly, d denotes the minimum of the pairwise distances (i, j), where i ∈ C and
j ∈ V \C. Note that d is determined by one of the thick black edges connecting C with
the rest of the graph, while d is determined by the two nodes incident to the thick gray
edge. The partition is regular, hence d < d holds for each cluster.

the partition. In order to keep this cost small, our algorithm learns to select qt

so as to avoid going back to the same region many times. This is based on the
following notions.

Fix an arbitrary subset C ⊆ V . The inner bor-
der ∂C of C is the set of all nodes i ∈ C that are
adjacent to a node j #∈ C (the dark grey nodes
in the picture at the side). The outer border
∂C of C is the set of all the nodes j #∈ C that are
adjacent to at least one node in the inner border
of C (the light grey nodes).

We are now ready to define the exploration/prediction rule of our algorithm.
At each time t, cga selects and predicts the label of a node adjacent to the node
in the inner border of Vt−1 which is closest to the previously predicted node it−1.
Formally,

ŷt = yqt where qt = argmin
q∈∂V t−1

dt−1(it−1, q) . (2)

We say that cluster C is exhausted at time t if at time t the algorithm has
already selected all nodes in C together with its outer border, i.e., if C∪∂C ⊆ Vt.
In the special but important case when labels are binary and the path length is
λ(s1, . . . , sd) = maxk !(sk−1, sk) (being ! the zero-one loss), the choice of node qt

in (2) can be defined as follows. If the cluster C where it−1 lies is not exhausted

Fig. 3. The behavior of cga displayed on the binary labeled graph of Fig. 1. The length
of a path s1, . . . , sd is measured by maxk #(sk−1, sk) and the loss is the zero-one loss.
The pictorial conventions are as in Fig. 1. As in that figure, the cutsize ΦG(y) of this
graph can be made as close to |V | as we like, still cga makes 4 mistakes. For the sake of
comparison, recall that the various versions of depthFirst can be forced to err ΦG(y)
times on this graph.

at the beginning of time t, then cga picks any node qt connected to it−1 by
a path all contained in Vt−1 ∩ C. On the other hand, if C is exhausted, cga

chooses an arbitrary node in Vt−1. Figure 3 contains a pictorial explaination of
the behavior of cga, as compared to depthFirst on the same binary labeled
graph as in Fig. 1. As we argue in the next section (Lemma 1 in Sect. 4), a key
property of cga is that when choosing qt causes the algorithm to move out of a
cluster of a regular partition, then the cluster must have been exhausted.

This suggests a fundamental difference between cga and simple algorithms
like depthFirst. Evidence of that is provided by comparing Fig. 1 to Fig. 3.
cga is seen to make a constant number of binary prediction mistakes on simple
graphs where depthFirst makes order of |V | mistakes.

The next definition provides our main measure of graph label regularity,
which we relate to cga’s predictive ability. Given a regular partition P of the ver-
tices V of an undirected, connected and labeled graph G = (V, E), for each C ∈ P
the merging degree δ(C) of cluster C is defined as δ(C) = min

{
|∂C|, |∂C|

}
.

The overall merging degree of the partition, denoted by δ(P) is given by δ(P) =∑
C∈C δ(C).
The merging degree δ(C) of a cluster C ∈ P quantifies the amount of inter-

action between C and the remaining clusters in P . For instance, in Fig. 3 the
left-most cluster has merging degree 1, the middle one has merging degree 2, and
the right-most one has merging degree 1. Hence this figure shows a case in which
the mistake bound of our algorithm is tight. Note that the middle cluster has
merging degree 2 no matter how we increase the number of negatively labeled
nodes in the dotted area (together with the corresponding outbound edges).

In the binary case, it is not difficult to compare the merging degree of a
partition to the graph custsize. Since at least one edge contributing to the cutsize
ΦG(y) must be incident to each node in an inner or outer border of a cluster,

δ(P) is never larger than 2ΦG(y). On the other hand, as suggested for example
by Fig. 3, δ(P) is often much smaller ΦG(y) (observe that δ(P) is never larger
than n, while ΦG(y) can even be quadratic on dense graphs). Finally, as hinted
again by Fig. 3, δ(P) is typically more robust to noise as compared to ΦG(y). For
instance, if we flip the label of the left-most node of the cluster on the right, the
merging degree of the depicted partition gets affected only by a small amount,
whereas the cutsize can decrease significantly.

4 Analysis
This section contains the analysis of cga’s predictive performance. The compu-
tational complexity analysis is contained in Sect. 5. For the sake of presentation,
we single out the binary classification case since it is an important special case
of our setting.

Fix an undirected and connected graph G = (V, E). The following lemma is
a key property of our algorithm.

Lemma 1. Assume cga is run on a graph G with labeling y ∈ Yn, and pick
any time step t > 0. Let P be a regular partition and assume it−1 ∈ C, where C
is any cluster in P. Then C is exhausted at time t − 1 if and only if qt #∈ C.

Proof. First, assume C is exhausted at time t − 1, i.e., C ∪ ∂C ⊆ Vt−1. Then
all nodes in C have been visited, and no node in C has unexplored edges. This
implies C ∩ ∂V t−1 ≡ ∅ and that the selection rule (2) makes the algorithm pick
qt outside of C. Assume now qt #∈ C. Since each cluster is a connected subgraph,
if the labels are binary the prediction rule ensures that cluster C is exhausted.
In the general case (when labels are not binary) we can prove by contradiction
that C is exhausted by analyzing the following two cases:

1. There exists j ∈ C \Vt−1. Since the subgraph in cluster C is connected, there
is a path in C connecting it−1 to j such that at least one node q′ ∈ C on this
path: (a) has unexplored edges, and (b) belongs to Vt−1, (i.e., q′ ∈ ∂V t−1),
and (c) is connected to it−1 by a path all contained in C ∩ Vt−1. Since the
partition is regular, q′ is closer to it−1 than to any node outside of C. Hence,
by construction —see (2), the algorithm would choose this q′ instead of qt

(due to (c) above), thereby leading to a contradiction.
2. There exists j ∈ ∂C \ Vt−1. Again, since the subgraph in cluster C is con-

nected, there is a path in C connecting it−1 to a node in ∂C adjacent to j.
Then we fall back into the previous case since at least one node q′ on this
path: (a) has unexplored edges, and (b) belongs to Vt−1, and (c) is connected
to it−1 by a path all contained in C ∩ Vt−1.

We begin to analyze the special case of binary labels and zero-one loss.

Theorem 1. If cga is run on an undirected and connected graph G with binary
labels then the total number m of mistakes satisfies m ≤ δ(P), where P is the
partition of V made up of the smallest number of clusters, each including only
nodes with the same label.4

4 Note that such a P is a regular partition of V . Moreover, one can show that for this
partition the bound in the theorem is never vacuous.

The key idea to the proof of this theorem is the following. Fix a cluster C ∈ P .
In each time step t when both qt and it belong to C a mistake never occurs. The
remaining time steps are of two kinds only: (1) Incoming lossy steps, where node
it belongs to the inner border of C; (2) outgoing lossy steps, where it belongs to
the outer border of C. With each such step we can thus uniquely associate a node
it in either (inner or outer) border of C. The overall loss involving C, however,
is typically much smaller than the sum of border cardinalities. This because, in
general, in each given cluster incoming and outgoing steps alternate, since the
algorithm first enters and then leaves the cluster. Hence, incoming and outgoing
steps must occur the same number of times, and their sum must then be at most
twice the minimum of the size of borders (what we called merging degree of the
cluster). The only exception to this alternating pattern occurs when a cluster
gets exhausted. In this case an incoming step is not followed by any outgoing
step for the exhausted cluster.

Proof of Theorem 1. Index by 1, . . . , |P| the clusters in P . We abuse the
notation and use P also to denote the set of cluster indices. Let k(t) be the
index of the cluster which it belongs to, i.e., it ∈ Ck(t). We say that step t is a
lossy step if ŷt #= yt, i.e. the label of qt is different from the label of it. A step t
in which a mistake occurs is incoming for cluster i (denoted by ∗ → i) if qt #∈ Ci

and it ∈ Ci, and it is outgoing for cluster i (denoted by i → ∗) if qt ∈ Ci and
it #∈ Ci. An outgoing step for cluster Ci is regular if the previous step in which
the algorithm made a mistake is incoming for Ci. All other outgoing steps are
called irregular. Let M→i (M reg

i→) be the set of all incoming (regular outgoing)
lossy steps for cluster Ci. Also, let M irr

i→ be the set of all irregular outgoing lossy
steps for Ci.

For each i ∈ P , define an injective mapping µi : M reg
i→ → M→i as follows (see

Fig. 4 for reference): Each lossy step t in M reg
i→ is mapped to the previous step

t′ = µi(t) when a mistake occurred. Lemma 1 insures that such step must be
incoming for i since t is a regular outgoing step. This shows that |M reg

i→ | ≤ |M→i|.
Now, let t be any irregular outgoing step for some cluster, t′ be the last lossy
step occurred before time t, and set j = k(t′). The very definition of an irregular
lossy step, combined with Lemma 1, allows us to conclude that t′ is the last lossy
step involving cluster Cj . This implies that t′ cannot be followed by an outgoing
lossy step j → ∗. Hence t′ is not in the image of µj , and the previous inequality
for |M reg

i→ | can be refined as |M reg
i→ | ≤ |M→i|−Ii. Here Ii is the indicator function

of the following event: “The very last lossy step t′ such that either q′t or i′t belong
to Ci is incoming for Ci”. We now claim that

∑
i∈P Ii ≥

∑
i∈P |M irr

i→|. In fact,
if we let t be an irregular lossy step and i be the index of the cluster for which
the previous lossy step t′ is incoming, the fact that t is irregular implies that Ci

must be exhausted between time t′ and time t, which in turn implies that Ii = 1,
since t′ must be the very last lossy step involving cluster Ci. Hence

m =
∑

i∈P

|M reg
i→ ∪ M irr

i→| ≤
∑

i∈P

(
|M→i| − Ii + |M irr

i→|
)
≤

∑

i∈P

|M→i| . (3)

Next, for each i ∈ P we define two further injective mappings that associate with
each incoming lossy step ∗ → i a vertex in the inner border of Ci and a vertex in

the outer border of Ci. This shows that |M→i| ≤ min
{
|∂Ci|, |∂Ci|

}
= δ(Ci) for

each i ∈ P . Together with (3) this would complete the proof (see again Fig. 4
for a pictorial explanation).

ν2(s)

ν1(s)

µi(t) t s

Fig. 4. Sequence (starting from the left)
of incoming and regular outgoing lossy
steps involving a given cluster Ci. We only
show the border nodes contributing to lossy
steps. We map injectively each regular out-
going lossy step t to the previous (incom-
ing) lossy step µi(t). We also map injec-
tively each incoming lossy step s to the node
ν1(s) in the inner border, whose label was
predicted at time s. Finally, we map injec-
tively s also to the node ν2(s) in the outer
border that caused the previous (outgoing)
lossy step for the same cluster.

The first injective mapping ν1 : M→i → ∂Ci is easily defined: ν1(t) = it ∈ Ci.
This is an injection because the algorithm can incur loss on a vertex at most
once. The second injective mapping ν2 : M→i → ∂Ci is defined in the following
way. Let M→i be equal to {t1, . . . , tk}, with t1 < · · · < tk. If t = t1 then ν2(t)
is simply qt ∈ ∂Ci. If instead t = tj with j ≥ 2, then ν2(t) = it′ ∈ ∂Ci, where
t′ is an outgoing lossy step i → ∗, lying between tj−1 and tj . Note that cluster
Ci cannot be exhausted after step tj−1 since another incoming lossy step ∗ → i
occurs at time tj > tj−1. Combined with Lemma 1 this guarantees the existence
of such a t′. Moreover, no subsequent outgoing lossy steps i → ∗ can mispredict
the same label yit′

. ./

As we already noted, the edges (qt, it) produced during the online functioning
of the algorithm form a spanning tree T for G. Therefore cga’s number of
mistakes m is always equal to ΦT (y). This shows that an obvious lower bound
on m is the total number of clusters |P|, i.e., the cost of the minimum spanning
tree for G. In fact, it is not difficult to prove that an adaptive adversary can
always force any algorithm working within our learning protocol to make Ω(|P|)
mistakes. This simple observation can be strengthened so as to match the upper
bound in Theorem 1.

Theorem 2. For all undirected and connected graphs G with n nodes and de-
gree bounded by a constant, for all K < n, and for any (randomized) explo-
ration/prediction strategy, there exists a labeling y of G’s vertices such that the
strategy makes at least K/2 mistakes (in expectation) with respect to the algo-
rithm’s internal randomization, while δ(P) = O(K).

The above lower bound, whose proof is omitted due to space limitations, can
actually be shown to hold even in cases when G does not have bounded degree
nodes, like cliques or general trees.

We now turn to the general case of nonbinary labels. The following definitions
are useful for espressing the cumulative loss bound of our algorithm: Let P be a
regular partition of the vertex set V and fix a cluster C ∈ P . We say that edge
(qt, it) causes an inter-cluster loss at time t if one of the two nodes of this
edge lies in ∂C and the other lies in ∂C. Edge (qt, it) causes an intra-cluster
loss when both qt and it are in C. We denote by !(C) the largest inter-cluster
loss in C, i.e.,

!(C) = max
i∈∂C, j "∈∂C, (i,j)∈E

!(yi, yj) .

Also !max
P is the maximum inter-cluster loss in the whole graph G, i.e., !max

P =
maxC∈P !(C). We also set for brevity !̄P = |P|−1

∑
C∈P !(C). Finally, we define

ε(C) = maxTC

∑
(i,j)∈E(TC) !(yi, yj), where the max is over all spanning trees

TC of C and E(TC) is the edge set of TC . Note that ε(C) bounds from above5

the total loss incurred in all steps t where qt and it both belong to C.
In the above definition, !(C) is a measure of connectivity of C to the remain-

ing clusters, ε(C) is a measure of “internal cohesion” of C, while !max
P and !̄P

give global distance measures among the clusters within P .
The following theorem shows that cga’s cumulative loss can be bounded

in terms of the regular partition P that best trades off total intra-cluster loss
(expressed by ε(C)), against total inter-cluster loss (expressed by δ(C) times
the largest inter-cluster loss !(C)). It is important to stress that cga never
explicitely computes this optimal partition: It is the selection rule for qt in (2)
that guarantees this optimal behavior.

Theorem 3. If cga is run on an undirected and connected graph G with arbi-
trary real labels, then the cumulative loss can be bounded as

n∑

t=1

!(ŷt, yt) ≤ min
P

(

|P|
(
!max
P − !̄P

)
+

∑

C∈P

(
ε(C) + !(C)δ(C)

))

, (4)

where the minimum is over all regular partitions P of V .

Remark 1. If ! is the zero-one loss, then the bound in (4) reduces to

n∑

t=1

!(ŷt, yt) ≤ min
P

∑

C∈P

(
ε(C) + δ(C)

)
. (5)

This shows that in the binary case the total number of mistakes can also be
bounded by the maximum number of edges connecting different clusters that

5
cga’s cumulative loss is

P|V |
t=1

#(qt, it), where the edges (qt, it), t = 1, . . . , |V | − 1
form a spanning tree for G; hence the subset of such edges which are incident to
nodes in C form a spanning forest for C. Our definition of ε(C) takes into account
that the total loss associated with the edge set of a spanning tree TC for C is at least
as large as the total loss associated with the edge set E(F) of any spanning forest
F for C such that E(F) ⊆ E(TC).

can be part of a spanning tree for G. In the binary case (5) achieves its min-
imum either on the trivial partition P = {V } or on the partition made up of
the smallest number of clusters C, each one including only nodes with the same
label (as in Theorem 1). In most cases, the nontrivial regular partition is the
minimizer of (5), so that the intra-cluster term ε(C) disappears. Then the bound
only includes the sum of merging degrees (w.r.t. that partition), thereby recov-
ering the bound in Theorem 1. However, in certain degenerate cases, the trivial
partition P = {V } turns out to be the best one. In such a case, the right-hand
side of (5) becomes ε(V) which, in turn, is bounded by ΦG(y).

The proof of Theorem 3 is similar to the one for the binary case, hence we
only emphasize the main differences. Let P be a regular partition of V . Clearly,
no matter how each C ∈ P is explored, the contribution to the total loss of
!(qt, it) for qt, it ∈ C is bounded by ε(C). The remaining losses contributed by
any cluster C are of two kinds only: losses on incoming steps, where the node it
belongs to the inner border of C, and losses on outgoing steps, where it belongs
to the outer border of C. As for the binary case, with each such step we can
thus associate a node in the inner and the outer border of C, since incoming
and outgoing step alternate for each cluster. The exception is when a cluster is
exhausted which, at first glance, seems to requires adding an extra term as big
as !max

P times the size |P| of the partition (this term could have a significant
impact for certain graphs). However, as explained in the proof below, !max

P can
be replaced by the potentially much smaller term !max

P − !̄P . In fact, in certain
cases this extra term disappears, and the final bound we obtain is just (5).

Proof of Theorem 3. Fix an arbitrary regular partition P of V and index by
1, . . . , |P| the clusters in it. We abuse the notation and use P also to denote the
set of cluster indices. We crudely upper bound the total loss incurred during
intra-cluster lossy steps by

∑
C∈P ε(C). Hence, in the rest of the proof we focus

on bounding the total loss incurred during inter-cluster lossy steps only. We say
that step t is a lossy step if !(qt, it) > 0, and we distinguish between intra-
cluster lossy steps (when qt and it belong to the same cluster) and inter-cluster
lossy steps (when qt and it belong to different clusters). We define incoming and
outgoing (regular and irregular) inter-cluster lossy steps for a given cluster Ci

(and the relative sets M→i, M reg
i→ and M irr

i→) as in the binary case proof, as well
as the injective mapping µi. In the binary case we bounded |M reg

i→ | by |M→i|−Ii.
In a similar fashion, we now bound

∑
t∈Mreg

i→
!t by !(Ci)

(
|M→i| − Ii

)
, where we

set for brevity !t = !(qt, it). We can write

∑

i∈P

∑

t∈Mreg
i→∪M irr

i→

!t ≤
∑

i∈P

(
!(Ci)

(
|M→i| − Ii

)
+ !max

P |M irr
i→|

)

≤
∑

i∈P

!(Ci)|M→i| +
∑

j∈P : Ij=1

(
!max
P − !(Cj)

)

≤
∑

i∈P

!(Ci)|M→i| + |P|
(
!max
P − !̄P

)
,

where the second inequality follows from
∑

i∈P Ii ≥
∑

i∈P |M irr
i→| (as for the

regular partition considered in the binary case). The proof is concluded after
defining the two injective mapping ν1 and ν2 as in the binary case, and bounding
again |M→i| through δ(Ci). ./

5 Computational Complexity

In this section we briefly describe an efficient implementation of cga, and discuss
some improvements for the special case of binary labels. This implementation
shows that cga is especially useful when dealing with large scale applications.
Recall that the path length assignment λ is a parameter of the algorithm and
satisfies (1). In order to develop a consistent argument about cga’s time and
space requirements, we need to make assumptions on the time it takes to compute
this function. If we are given the distance between any pair of nodes i and j,
and the loss !(j, j′) for any j′ adjacent to j, we assume to be able to compute
in constant time the length of the shortest path i, . . . , j, j′. This assumption is
easily seen to hold for many natural path length assignments λ over graphs,
for instance λ(s1, . . . , sd) = maxk !(sk−1, sk) and λ(s1, . . . , sd) =

∑
k !(sk−1, sk)

—note that both fulfill (1).
Because of the above assumption on the path length λ, in the general case of

real labels cga can be implemented using the well-known Dijkstra’s algorithm
for single-source shortest path (see, e.g., [7, Ch. 21]). After all nodes in Vt−1 and
all edges incident to it have been revealed, cga computes the distance between
it and any other node in Vt−1 by invoking Dijkstra’s algorithm on the sub-graph
Gt, so that cga can easily find node qt+1. If Dijkstra’s algorithm is implemented
with Fibonacci heaps [7, Ch. 25], the total time required for predicting all |V |
labels is6 O

(
|V ||E| + |V |2 log |V |

)
. On the other hand, the space complexity is

always linear in the size of G.
We now sketch the binary case. The additional assumption λ(s1, . . . , sd) =

maxk !(sk−1, sk) allows us to exploit the simple structure of regular partitions.
Coarsely speaking, we maintain information about the current inner border and
clusters, and organize this information in a balanced tree, connecting the nodes
lying in the same cluster through specially designed lists.

In order to describe this implementation, it is important to observe that, since
the graph is revelead incrementally, it might be the case that a single cluster C
in G at time t happens to be split into several disconnected parts in Gt. We
call sub-cluster each maximal set of nodes that are part of the same uniformly
labeled and connected subgraph of Gt. The main data structures we use (further
details are omitted due to space limitations) for organizing the nodes observed
so far by the algorithm combine the following:

– A self-balancing binary search tree T containing the labeled nodes in Vt. We
will refer to nodes in Vt and to nodes in T interchangeably.

6 In practice, the actual running time is often far less than O
`

|V ||E| + |V |2 log |V |
´

,
since at each time step t Dijkstra’s algorithm can be stopped as soon as the node of
∂V t−1

nearest to it in Gt has been found.

– Given a sub-cluster C, all nodes in C ∩ ∂V t are connected via a special
list called border sub-cluster list. The remaining nodes in C are connected
through a list called internal sub-cluster list.

– All nodes in each sub-cluster C ⊆ Vt are linked to a special time-varying
set called sub-cluster record. This record enables access to the first and last
element of both the border and the internal sub-cluster list of C. The sub-
cluster record also contains the size of C.

The above data structures are intended to support the following main operations,
which are executed in the following order at each time step t, just after the
algorithm has selected qt: (1) insertion of it; when it is chosen by the adversary
cga also receives the list N(it) of all nodes in Vt−1 adjacent to it; (2) merging of
subclusters required after the disclosure of yt; (3) update of border and internal
sub-cluster lists (since some nodes in ∂V t−1 are not in ∂V t); (4) choice of qt+1.

The merging operation can be implemented as union-by-rank in standard
union-find data structures (e.g., [7, Ch. 22]). The overall running time for |V |
nodes is smaller than O

(
|V | log |V |

)
. In fact, the dominating cost in the time

complexity is the cost for reaching at each time t the nodes of Vt−1 adjacent to
it. Each of these it’s neighbors can be bijectively associated with an edge of E,
the height of tree T being at most logarithmic in V . Hence the overall running
time for predicting |V | labels is O

(
|E| log |V | + |V | log |V |

)
= O

(
|E| log |V |

)
,

which is the best one can hope for (an obvious lower bound is |E|) up to a
logarithmic factor.

As for space complexity, it is important to stress that on every step t the
algorithm first stores and then “throws way” the received node list N(it) (in the
worst case, the length of N(it) is linear in |V |). The space complexity is therefore
O(|V |). This optimal use of space is one of the most important practical strengths
of cga, since the algorithm never needs to store the whole graph seen so far.

6 Conclusions and Ongoing Research

We have presented a first step towards the study of problems related to learning
(labeled) graph exploration strategies. This is a significant departure from more
standard approaches assuming prior knowledge of the underlying graph structure
(e.g., [2, 3, 6, 9, 10, 11, 12, 13, 14, 17] and references therein).

We are currently investigating to what extent our approach can be extended
to weighted graphs. In order to exploit the benefits of edge weights, our pro-
tocol in Sect. 2 could be modified to let cga observe the weights of all edges
incident to the current node. Whenever the weights of intra-cluster edges are
heavier than those of inter-cluster ones, our algorithm can take advantage of the
additional weight information. This calls for an analysis being able to capture
the interaction between node labels and edge weights.

Acknowledgments. We would like to thank the ALT 2009 reviewers for their
comments which greatly improved the presentation of this paper. This work
was supported in part by the PASCAL2 Network of Excellence under EC grant
216886. This publication only reflects the authors’ views

References
[1] S. Albers and M. Henzinger. Exploring unknown environments. SIAM Journal

on Computing, 29(4):1164–1188, 2000.
[2] A. Blum and S. Chawla. Learning from labeled and unlabeled data using graph

mincuts. In Proc. 18th ICML. Morgan Kaufmann, 2001.
[3] A. Blum, J. Lafferty, M. Rwebangira, and R. Reddy. Semi-supervised learning

using randomized mincuts. In Proc. 21st ICML. ACM Press, 2004.
[4] D. Bryant and V. Berry. A Structured family of clustering and tree construction

methods. Advances in Applied Mathematics, 27, 705–732, 2001.
[5] N. Balcan, A. Blum, and S. Vempala. A discriminative framework for clustering

via similarity functions. In Proc. 40th STOC. ACM Press, 2008.
[6] N. Cesa-Bianchi, C. Gentile, and F. Vitale. Fast and optimal prediction of a labeled

tree. In Proc. 22nd COLT. Omnipress, 2009.
[7] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT

Press, 1990.
[8] X. Deng and C.H. Papadimitriou. Exploring an unknown graph. In Proc. 31st

FOCS, pages 355–361. IEEE Press, 1990.
[9] S. Hanneke. An analysis of graph cut size for transductive learning. In Proc. 23rd

ICML, pages 393–399. ACM Press, 2006.
[10] M. Hebster and M. Pontil. Prediction on a graph with the Perceptron. In NIPS

19, pages 577–584. MIT Press, 2007.
[11] M. Herbster. Exploiting cluster-structure to predict the labeling of a graph. In

Proc. 19th ALT. Springer, 2008.
[12] M. Herbster, G. Lever, and M. Pontil. Online prediction on large diameter graphs.

In NIPS 22. MIT Press, 2009.
[13] M. Herbster, M. Pontil, and S. Rojas-Galeano. Fast prediction on a tree. In NIPS

22. MIT Press, 2009.
[14] M. Herbster and G. Lever. Predicting the labelling of a graph via minimum p-

seminorm interpolation. In Proc. 22nd COLT. Omnipress, 2009.
[15] T. Joachims. Transductive Learning via Spectral Graph Partitioning In Proc. 20th

ICML, pages 305–132. AAAI Press, 2003.
[16] I. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete input

spaces. In Proc. 19th ICML, pages 315–322. Morgan Kaufmann, 2002.
[17] J. Pelckmans, J. Shawe-Taylor, J. Suykens, and B. De Moor. Margin based trans-

ductive graph cuts using linear programming. In Proc. 11th AISTAT, pages 360–
367. JMLR Proceedings Series, 2007.

[18] J. Remy, A. Souza, and A. Steger. On an online spanning tree problem in randomly
weighted graphs. Combinatorics, Probability and Computing, 16:127–144, 2007.

[19] A. Smola and I. Kondor. Kernels and regularization on graphs. In Proc. 16th
COLT, pages 144–158. Springer, 2003.

[20] W.S. Yang and J.B. Dia. Discovering cohesive subgroups from social networks for
targeted advertising. In Expert Systems with Applications, 34:2029–2038. Elsevier,
2008.

