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Abstract
A new algorithm for on-line learning linear-threshold functions is proposed which
efficiently combines second-order statistics about the data with the ”logarithmic
behavior” of multiplicative/dual-norm algorithms. An initial theoretical analysis is
provided suggesting that our algorithm might be viewed as a standard Perceptron
algorithm operating on a transformed sequence of examples with improved mar-
gin properties. We also report on experiments carried out on datasets from diverse
domains, with the goal of comparing to known Perceptron algorithms (first-order,
second-order, additive, multiplicative). Our learning procedure seems to general-
ize quite well, and converges faster than the corresponding multiplicative baseline
algorithms.

1 Introduction and preliminaries
The problem of on-line learning linear-threshold functions from labeled data is one which have
spurred a substantial amount of research in Machine Learning. The relevance of this task from
both the theoretical and the practical point of view is widely recognized: On the one hand, linear
functions combine flexiblity with analytical and computational tractability, on the other hand, on-
line algorithms provide efficient methods for processing massive amounts of data. Moreover, the
widespread use of kernel methods in Machine Learning (e.g., [24]) have greatly improved the scope
of this learning technology, thereby increasing even further the general attention towards the specific
task of incremental learning (generalized) linear functions. Many models/algorithms have been
proposed in the literature (stochastic, adversarial, noisy, etc.) : Any list of references would not do
justice of the existing work on this subject. In this paper, we are interested in the problem of on-
line learning linear-threshold functions from adversarially generated examples. We introduce a new
family of algorithms, collectively called the Higher-order Perceptron algorithm (where ”higher”
means here ”higher than one”, i.e., ”higher than first-order” descent algorithms such as gradient-
descent or standard Perceptron-like algorithms”). Contrary to other higher-order algorithms, such
as the ridge regression-like algorithms considered in, e.g., [4, 7], Higher-order Perceptron has the
ability to put together in a principled and flexible manner second-order statistics about the data with
the ”logarithmic behavior” of multiplicative/dual-norm algorithms (e.g., [18, 19, 6, 13, 15, 20]). Our
algorithm exploits a simplified form of the inverse data matrix, lending itself to be easily combined
with the dual norms machinery introduced by [13] (see also [12, 23]). As we will see, this has also
computational advantages, allowing us to formulate an efficient (subquadratic) implementation.

Our contribution is twofold. First, we provide an initial theoretical analysis suggesting that our
algorithm might be seen as a standard Perceptron algorithm [21] operating on a transformed se-
quence of examples with improved margin properties. The same analysis also suggests a simple
(but principled) way of switching on the fly between higher-order and first-order updates. This is
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especially convenient when we deal with kernel functions, a major concern being the sparsity of the
computed solution. The second contribution of this paper is an experimental investigation of our
algorithm on artificial and real-world datasets from various domains: We compared Higher-order
Perceptron to baseline Perceptron algorithms, like the Second-order Perceptron algorithm defined in
[7] and the standard (p-norm) Perceptron algorithm, as in [13, 12]. We found in our experiments that
Higher-order Perceptron generalizes quite well. Among our experimental findings are the follow-
ing: 1) Higher-order Perceptron is always outperforming the corresponding multiplicative (p-norm)
baseline (thus the stored data matrix is always beneficial in terms of convergence speed); 2) When
dealing with Euclidean norms (p = 2), the comparison to Second-order Perceptron is less clear and
depends on the specific task at hand.

Learning protocol and notation. Our algorithm works in the well-known mistake bound model
of on-line learning, as introduced in [18, 2], and further investigated by many authors (e.g., [19, 6,
13, 15, 7, 20, 23] and references therein). Prediction proceeds in a sequence of trials. In each trial
t = 1, 2, . . . the prediction algorithm is given an instance vector in Rn (for simplicity, all vectors are
normalized, i.e., ||xt|| = 1, where || · || is the Euclidean norm unless otherwise specified), and then
guesses the binary label yt ∈ {−1, 1} associated with xt. We denote the algorithm’s prediction by
�yt ∈ {−1, 1}. Then the true label yt is disclosed. In the case when �yt �= yt we say that the algorithm
has made a prediction mistake. We call an example a pair (xt, yt), and a sequence of examples S
any sequence S = (x1, y1), (x2, y2), . . . , (xT , yT ). In this paper, we are competing against the
class of linear-threshold predictors, parametrized by normal vectors u ∈ {v ∈ Rn : ||v|| = 1}. In
this case, a common way of measuring the (relative) prediction performance of an algorithm A is
to compare the total number of mistakes of A on S to some measure of the linear separability of S.
One such measure (e.g., [24]) is the cumulative hinge-loss (or soft-margin) Dγ(u;S) of S w.r.t. a
linear classifier u at a given margin value γ > 0: Dγ(u;S) =

�T
t=1 max{0, γ−ytu�xt} (observe

that Dγ(u;S) vanishes if and only if u separates S with margin at least γ.
A mistake-driven algorithm A is one which updates its internal state only upon mistakes. One
can therefore associate with the run of A on S a subsequence M = M(S, A) ⊆ {1, . . . , T} of
mistaken trials. Now, the standard analysis of these algorithms allows us to restrict the behavior
of the comparison class to mistaken trials only and, as a consequence, to refine Dγ(u;S) so as to
include only trials in M: Dγ(u;S) =

�
t∈Mmax{0, γ − ytu�xt}. This gives bounds on A’s

performance relative to the best u over a sequence of examples produced (or, actually, selected)
by A during its on-line functioning. Our analysis in Section 3 goes one step further: the number
of mistakes of A on S is contrasted to the cumulative hinge loss of the best u on a transformed
sequence S̃ = ((x̃i1 , yi1), (x̃i2 , yi2), . . . , (x̃im , yim)), where each instance xik gets transformed
into x̃ik through a mapping depending only on the past behavior of the algorithm (i.e., only on
examples up to trial t = ik−1). As we will see in Section 3, this new sequence S̃ tends to be ”more
separable” than the original sequence, in the sense that if S is linearly separable with some margin,
then the transformed sequence S̃ is likely to be separable with a larger margin.

2 The Higher-order Perceptron algorithm

The algorithm (described in Figure 1) takes as input a sequence of nonnegative parameters ρ1, ρ2, ...,
and maintains a product matrix Bk (initialized to the identity matrix I) and a sum vector vk (ini-
tialized to 0). Both of them are indexed by k, a counter storing the current number of mistakes
(plus one). Upon receiving the t-th normalized instance vector xt ∈ Rn, the algorithm computes
its binary prediction value �yt as the sign of the inner product between vector Bk−1vk−1 and vector
Bk−1xt. If �yt �= yt then matrix Bk−1 is updates multiplicatively as Bk = Bk−1 (I − ρk xtx�t )
while vector vk−1 is updated additively through the standard Perceptron rule vk = vk−1 + yt xt.
The new matrix Bk and the new vector vk will be used in the next trial. If �yt = yt no update is
performed (hence the algorithm is mistake driven). Observe that ρk = 0 for any k makes this algo-
rithm degenerate into the standard Perceptron algorithm [21]. Moreover, one can easily see that, in
order to let this algorithm exploit the information collected in the matrix B (and let the algorithm’s
behavior be substantially different from Perceptron’s) we need to ensure

�∞
k=1 ρk = ∞. In the

sequel, our standard choice will be ρk = c/k, with c ∈ (0, 1). See Sections 3 and 4.
Implementing Higher-Order Perceptron can be done in many ways. Below, we quickly describe
three of them, each one having its own merits.
1) Primal version. We store and update an n×nmatrixAk = B�

k Bk and an n-dimensional column



Parameters: ρ1, ρ2, ... ∈ [0, 1).
Initialization: B0 = I; v0 = 0; k = 1.
Repeat for t = 1, 2, . . . , T :

1. Get instance xt ∈ Rn, ||xt|| = 1;
2. Predict �yt = SGN(w�

k−1xt) ∈ {−1,+1}, where wk−1 = B�
k−1Bk−1vk−1;

3. Get label yt ∈ {−1,+1};
4. if �yt �= yt then: vk = vk−1 + yt xt

Bk = Bk−1 (I − ρk xtx
�
t )

k ← k + 1.

Figure 1: The Higher-order Perceptron algorithm (for p = 2).

vector vk. MatrixAk is updated asAk = Ak−1−ρAk−1xx�−ρxx�Ak−1 +ρ2(x�Ak−1x)xx�,
taking O(n2) operations, while vk is updated as in Figure 1. Computing the algorithm’s margin
v�Ax can then be carried out in time quadratic in the dimension n of the input space.
2) Dual version. This implementation allows us the use of kernel functions (e.g., [24]). Let us
denote by Xk the n × k matrix whose columns are the n-dimensional instance vectors x1, ...,xk

where a mistake occurred so far, and yk be the k-dimensional column vector of the corresponding
labels. We store and update the k × k matrix Dk = [d(k)

i,j ]ki,j=1, the k × k diagonal matrix Hk =
DIAG{hk}, hk = (h(k)

1 , ..., h(k)
k )� = X�

k Xk yk, and the k-dimensional column vector gk = yk +
Dk Hk 1k, being 1k a vector of k ones. If we interpret the primal matrix Ak above as Ak =
I +

�k
i,j=1 d(k)

i,j xix�j , it is not hard to show that the margin value w�
k−1x is equal to g�k−1X

�
k−1x,

and can be computed through O(k) extra inner products. Now, on the k-th mistake, vector g can
be updated with O(k2) extra inner products by updating D and H in the following way. We let
D0 and H0 be empty matrices. Then, given Dk−1 and Hk−1 = DIAG{hk−1}, we have1 Dk =�

Dk−1 −ρk bk

−ρk b�k d(k)
k,k

�
, where bk = Dk−1X�

k−1xk, and d(k)
k,k = ρ2

k x�k Xk−1bk − 2ρk + ρ2
k. On

the other hand, Hk = DIAG{hk−1 + yk X�
k−1xk , h(k)

k }, with h(k)
k = y�k−1X

�
k−1xk + yk.

Observe that on trials when ρk = 0 matrix Dk−1 is padded with a zero row and a zero column.
This amounts to say that matrix Ak = I +

�k
i,j=1 d(k)

i,j xix�j , is not updated, i.e., Ak = Ak−1. A
closer look at the above update mechanism allows us to conclude that the overall extra inner prod-
ucts needed to compute gk is actually quadratic only in the number of past mistaken trials having
ρk > 0. This turns out to be especially important when using a sparse version of our algorithm
which, on a mistaken trial, decides whether to update both B and v or just v (see Section 4).
3) Implicit primal version and the dual norms algorithm. This is based on the simple observation
that for any vector z we can compute Bkz by unwrapping Bk as in Bkz = Bk−1(I − ρxx�)z =
Bk−1z�, where vector z� = (z − ρx x�z) can be calculated in time O(n). Thus computing
the margin v�B�

k−1Bk−1x actually takes O(nk). Maintaining this implicit representation for the
product matrix B can be convenient when an efficient dual version is likely to be unavailable,
as is the case for the multiplicative (or, more generally, dual norms) extension of our algorithm.
We recall that a multiplicative algorithm is useful when learning sparse target hyperplanes (e.g.,
[18, 15, 3, 12, 11, 20]). We obtain a dual norms algorithm by introducing a norm parameter p ≥ 2,
and the associated gradient mapping2 g : θ ∈ Rn → ∇θ||θ||

2
p / 2 ∈ Rn. Then, in Figure 1, we

normalize instance vectors xt w.r.t. the p-norm, we define wk−1 = B�
k−1g(Bk−1vk−1), and gen-

eralize the matrix update as Bk = Bk−1(I − ρkxtg(xt)�). As we will see, the resulting algorithm
combines the multiplicative behavior of the p-norm algorithms with the ”second-order” information
contained in the matrix Bk. One can easily see that the above-mentioned argument for computing
the margin g(Bk−1vk−1)�Bk−1x in time O(nk) still holds.

1Observe that, by construction,Dk is a symmetric matrix.
2This mapping has also been used in [12, 11]. Recall that setting p = O(log n) yields an algorithm similar

to Winnow [18]. Also, notice that p = 2 yields g = identity.



3 Analysis
We express the performance of the Higher-order Perceptron algorithm in terms of the hinge-loss
behavior of the best linear classifier over the transformed sequence

S̃ = (B0xt(1), yt(1)), (B1xt(2), yt(2)), (B2xt(3), yt(3)), . . . , (1)

being t(k) the trial where the k-th mistake occurs, andBk the k-th matrix produced by the algorithm.
Observe that each feature vector xt(k) gets transformed by a matrix Bk depending on past examples
only. This is relevant to the argument that S̃ tends to have a larger margin than the original sequence
(see the discussion at the end of this section). This neat ”on-line structure” does not seem to be
shared by other competing higher-order algorithms, such as the ”ridge regression-like” algorithms
considered, e.g., in [25, 4, 7, 23]. For the sake of simplicity, we state the theorem below only in the
case p = 2. A more general statement holds when p ≥ 2.

Theorem 1 Let the Higher-order Perceptron algorithm in Figure 1 be run on a sequence of exam-
ples S = (x1, y1), (x2, y2), . . . , (xT , yT ). Let the sequence of parameters ρk satisfy 0 ≤ ρk ≤

1−c
1+|v�k−1xt|

, where xt is the k-th mistaken instance vector, and c ∈ (0, 1]. Then the total number m

of mistakes satisfies3
m ≤ α

Dγ(u; S̃c))
γ

+
α2

2γ2
+

α

γ

�

α
Dγ(u; S̃c))

γ
+

α2

4γ2
, (2)

holding for any γ > 0 and any unit norm vector u ∈ Rn, where α = α(c) = (2− c)/c.
Proof. The analysis deliberately mimics the standard Perceptron convergence analysis [21]. We fix
an arbitrary sequence S = (x1, y1), (x2, y2), . . . , (xT , yT ) and letM ⊆ {1, 2, . . . , T} be the set
of trials where the algorithm in Figure 1 made a mistake. Let t = t(k) be the trial where the k-th
mistake occurred. We study the evolution of ||Bkvk||2 over mistaken trials. Notice that the matrix
B�

k Bk is positive semidefinite for any k. We can write
||Bkvk||2 = ||Bk−1 (I − ρk xtx

�
t ) (vk−1 + yt xt) ||2

(from the update rule vk = vk−1 + yt xt and Bk = Bk−1 (I − ρk xtx�t ) )
= ||Bk−1vk−1 + yt (1− ρkytvk−1xt − ρk)Bk−1xt||2 (using ||xt|| = 1)
= ||Bk−1vk−1||2 + 2 ytrk v�k−1B

�
k−1Bk−1xt + r2

k||Bk−1xt||2,
where we set for brevity rk = 1− ρkytvk−1xt− ρk.We proceed by upper and lower bounding the
above chain of equalities. To this end, we need to ensure rk ≥ 0. Observe that ytvk−1xt ≥ 0 implies
rk ≥ 0 if and only if ρk ≤ 1/(1+ytvk−1xt). On the other hand, if ytvk−1xt < 0 then, in order for
rk to be nonnegative, it suffices to pick ρk ≤ 1. In both cases ρk ≤ (1− c)/(1 + |vk−1xt|) implies
rk ≥ c > 0, and also r2

k ≤ (1+ρk|vk−1xt|−ρk)2 ≤ (2−c)2. Now, using yt v�k−1B
�
k−1Bk−1xt ≤ 0

(combined with rk ≥ 0), we conclude that ||Bkvk||2 − ||Bk−1vk−1||2 ≤ (2− c)2 ||Bk−1 xt||2 =
(2− c)2 x�t Ak−1 xt, where we set Ak = B�

k Bk. A simple4 (and crude) upper bound on the last
term follows by observing that ||xt|| = 1 implies x�t Ak−1 xt ≤ ||Ak−1||, the spectral norm (largest
eigenvalue) of Ak−1. Since a factor matrix of the form (I − ρ xx�) with ρ ≤ 1 and ||x|| = 1 has
spectral norm one, we have x�t Ak−1 xt ≤ ||Ak−1|| ≤

�k−1
i=1 ||I − ρi xt(i)x

�
t(i)||2 ≤ 1. Therefore,

summing over k = 1, . . . ,m = |M| (or, equivalently, over t ∈ M) and using v0 = 0 yields the
upper bound

||Bmvm||2 ≤ (2− c)2 m. (3)
To find a lower bound of the left-hand side of (3), we first pick any unit norm vector u ∈ Rn, and
apply the standard Cauchy-Schwartz inequality: ||Bmvm|| ≥ u�Bmvm. Then, we observe that for
a generic trial t = t(k) the update rule of our algorithm allows us to write

u�Bkvk − u�Bk−1vk−1 = rk yt u�Bk−1xt ≥ rk (γ −max{0, γ − yt u�Bk−1xt}),
where the last inequality follows from rk ≥ 0 and holds for any margin value γ > 0. We sum

3The subscript c in S̃c emphasizes the dependence of the transformed sequence on the choice of c. Note
that in the special case c = 1 we have ρk = 0 for any k and α = 1, thereby recovering the standard Perceptron
bound for nonseparable sequences (see, e.g., [12]).

4A slightly more refined bound can be derived which depends on the trace of matrices I −Ak. Details will
be given in the full version of this paper.



the above over k = 1, . . . ,m and exploit c ≤ rk ≤ 2 − c after rearranging terms. This gets
||Bmvm|| ≥ u�Bmvm ≥ c γ m− (2− c)Dγ(u; S̃c). Combining with (3) and solving form gives
the claimed bound. �
From the above result one can see that our algorithm might be viewed as a standard Perceptron
algorithm operating on the transformed sequence S̃c in (1). We now give a qualitative argument,
which is suggestive of the improved margin properties of S̃c. Assume for simplicity that all examples
(xt, yt) in the original sequence are correctly classified by hyperplane u with the same margin
γ = yt u�xt > 0, where t = t(k). According to Theorem 1, the parameters ρ1, ρ2, . . . should be
small positive numbers. Assume, again for simplicity, that all ρk are set to the same small enough
value ρ > 0. Then, up to first order, matrix Bk =

�k
i=1(I − ρ xt(i)x

�
t(i)) can be approximated as

Bk � I−ρ
�k

i=1 xt(i)x
�
t(i). Then, to the extent that the above approximation holds, we can write:

5

yt u�Bk−1xt = yt u�
�
I − ρ

�k−1
i=1 xt(i)x

�
t(i)

�
xt = yt u�

�
I − ρ

�k−1
i=1 yt(i)xt(i) yt(i)x

�
t(i)

�
xt

= yt u�xt − ρ yt

��k−1
i=1 yt(i) u�xt(i) yt(i)x

�
t(i)

�
xt = γ − ρ γ yt v�k−1xt.

Now, yt v�k−1xt is the margin of the (first-order) Perceptron vector vk−1 over a mistaken trial for
the Higher-order Perceptron vector wk−1. Since the two vectors vk−1 and wk−1 are correlated
(recall that v�k−1wk−1 = v�k−1B

�
k−1Bk−1vk−1 = ||Bk−1vk−1||2 ≥ 0) the mistaken condition

yt w�
k−1xt ≤ 0 is more likely to imply yt v�k−1xt ≤ 0 than the opposite. This tends to yield a

margin larger than the original margin γ. As we mentioned in Section 2, this is also advantageous
from a computational standpoint, since in those cases the matrix update Bk−1 → Bk might be
skipped (this is equivalent to setting ρk = 0), still Theorem 1 would hold.

Though the above might be the starting point of a more thorough theoretical understanding of the
margin properties of our algorithm, in this paper we prefer to stop early and leave any further inves-
tigation to collecting experimental evidence.

4 Experiments

We tested the empirical performance of our algorithm by conducting a number of experiments on a
collection of datasets, both artificial and real-world from diverse domains (Optical Character Recog-
nition, text categorization, DNA microarrays). The main goal of these experiments was to compare
Higher-order Perceptron (with both p = 2 and p > 2) to known Perceptron-like algorithms, such
as first-order [21] and second-order Perceptron [7], in terms of training accuracy (i.e., convergence
speed) and test set accuracy. The results are contained in Tables 1, 2, 3, and in Figure 2.

Task 1: DNA microarrays and artificial data. The goal here was to test the convergence proper-
ties of our algorithms on sparse target learning tasks. We first tested on a couple of well-known DNA
microarray datasets. For each dataset, we first generated a number of random training/test splits (our
random splits also included random permutations of the training set). The reported results are aver-
aged over these random splits. The two DNA datasets are: i. The ER+/ER− dataset from [14]. Here
the task is to analyze expression profiles of breast cancer and classify breast tumors according to ER
(Estrogen Receptor) status. This dataset (which we call the “Breast” dataset) contains 58 expression
profiles concerning 3389 genes. We randomly split 1000 times into a training set of size 47 and a
test set of size 11. ii. The “Lymphoma” dataset [1]. Here the goal is to separate cancerous and
normal tissues in a large B-Cell lymphoma problem. The dataset contains 96 expression profiles
concerning 4026 genes. We randomly split the dataset into a training set of size 60 and a test set of
size 36. Again, the random split was performed 1000 times. On both datasets, the tested algorithms
have been run by cycling 5 times over the current training set. No kernel functions have been used.

We also artificially generated two (moderately) sparse learning problems with margin γ ≥ 0.005 at
labeling noise levels η = 0.0 (linearly separable) and η = 0.1, respectively. The datasets have been
generated at random by first generating two (normalized) target vectors u ∈ {−1, 0,+1}500, where
the first 50 components are selected independently at random in {−1,+1} and the remaining 450

5Again, a similar argument holds in the more general setting p ≥ 2. The reader should notice how important
the dependence of Bk on the past is to this argument.



components are 0. Then we set η = 0.0 for the first target and η = 0.1 for the second one and,
corresponding to each of the two settings, we randomly generated 1000 training examples and 1000
test examples. The instance vectors are chosen at random from [−1,+1]500 and then normalized. If
u · xt ≥ γ then a +1 label is associated with xt. If u · xt ≤ −γ then a −1 label is associated with
xt. The labels so obtained are flipped with probability η. If |u · xt| < γ then xt is rejected and
a new vector xt is drawn. We call the two datasets ”Artificial 0.0” and ”Artificial 0.1”. We tested
our algorithms by training over an increasing number of epochs and checking the evolution of the
corresponding test set accuracy. Again, no kernel functions have been used.

Task 2: Text categorization. The text categorization datasets are derived from the first 20,000
newswire stories in the Reuters Corpus Volume 1 (RCV1, [22]). A standard TF-IDF bag-of-words
encoding was used to transform each news story into a normalized vector of real attributes. We
built four binary classification problems by “binarizing” consecutive news stories against the four
target categories 70, 101, 4, and 59. These are the 2nd, 3rd, 4th, and 5th most frequent6 categories,
respectively, within the first 20,000 news stories of RCV1. We call these datasets RCV1x, where
x = 70, 101, 4, 59. Each dataset was split into a training set of size 10,000 and a test set of the same
size. All algorithms have been trained for a single epoch. We initially tried polynomial kernels,
then realized that kernel functions did not significantly alter our conclusions on this task. Thus the
reported results refer to algorithms with no kernel functions.

Task 3: Optical character recognition (OCR). We used two well-known OCR benchmarks: the
USPS dataset and the MNIST dataset [16] and followed standard experimental setups, such as the
one in [9], including the one-versus-rest scheme for reducing a multiclass problem to a set of binary
tasks. We used for each algorithm the standard Gaussian and polynomial kernels, with parameters
chosen via 5-fold cross validation on the training set across standard ranges. Again, all algorithms
have been trained for a single epoch over the training set. The results in Table 3 only refer to the
best parameter settings for each kernel.

Algorithms. We implemented the standard Perceptron algorithm (with and without kernels), the
Second-order Perceptron algorithm, as described in [7] (with and without kernels), and our Higher-
order Perceptron algorithm. The implementation of the latter algorithm (for both p = 2 and p > 2)
was ”implicit primal” when tested on the sparse learning tasks, and in dual variables for the other two
tasks. When using Second-order Perceptron, we set its parameter a (see [7] for details) by testing
on a generous range of values. For brevity, only the settings achieving the best results are reported.
On the sparse learning tasks we tried Higher-order Perceptron with norm p = 2, 4, 7, 10, while on
the other two tasks we set p = 2. In any case, for each value of p, we set7 ρk = c/k, with c =
0, 0.2, 0.4, 0.6, 0.8. Since c = 0 corresponds to a standard p-norm Perceptron algorithm [13, 12] we
tried to emphasize the comparison c = 0 vs. c > 0. Finally, when using kernels on the OCR tasks,
we also compared to a sparse dual version of Higher-order Perceptron. On a mistaken round t =
t(k), this algorithm sets ρk = c/k if yt vk−1xt ≥ 0, and ρk = 0 otherwise (thus, when yt vk−1xt <
0 the matrix Bk−1 is not updated). For the sake of brevity, the standard Perceptron algorithm is
called FO (”First Order”), the Second-order algorithm is denoted by SO (”Second Order”), while the
Higher-order algorithm with norm parameter p and ρk = c/k is abbreviated as HOp(c). Thus, for
instance, FO = HO2(0).

Results and conclusions. Our Higher-order Perceptron algorithm seems to deliver interesting
results. In all our experiments HOp(c) with c > 0 outperforms HOp(0). On the other hand, the
comparison HOp(c) vs. SO depends on the specific task. On the DNA datasets, HOp(c) with c > 0 is
clearly superior in Breast. On Lymphoma, HOp(c) gets worse as p increases. This is a good indica-
tion that, in general, a multiplicative algorithm is not suitable for this dataset. In any case, HO2 turns
out to be only slightly worse than SO. On the artificial datasets HOp(c) with c > 0 is always better
than the corresponding p-norm Perceptron algorithm. On the text categorization tasks, HO2 tends to
perform better than SO. On USPS, HO2 is superior to the other competitors, while on MNIST it per-
forms similarly when combined with Gaussian kernels (though it turns out to be relatively sparser),
while it is slightly inferior to SO when using polynomial kernels. The sparse version of HO2 cuts
the matrix updates roughly by half, still maintaining a good performance. In all cases HO2 (either
sparse or not) significantly outperforms FO.
In conclusion, the Higher-order Perceptron algorithm is an interesting tool for on-line binary clas-

6We did not use the most frequent category because of its significant overlap with the other ones.
7Notice that this setting fulfills the condition on ρk stated in Theorem 1.



Table 1: Training and test error on the two datasets ”Breast” and ”Lymphoma”. Training error is
the average total number of updates over 5 training epochs, while test error is the average fraction
of misclassified patterns in the test set, The results refer to the same training/test splits. For each
algorithm, only the best setting is shown (best training and best test setting coincided in these ex-
periments). Thus, for instance, HO2 differs from FO because of the c parameter. We emphasized
the comparison HO7(0) vs. HO7(c) with best c among the tested values. According to Wilcoxon
signed rank test, an error difference of 0.5% or larger might be considered significant. In bold are
the smallest figures achieved on each row of the table.

FO HO2 HO4 HO7(0) HO7 HO10 SO
BREAST TRAIN 45.2 21.7 24.5 47.4 24.5 32.4 29.6

TEST 23.4% 16.4% 13.3% 15.7% 12.0% 13.5 15.0%
LYMPHOMA TRAIN 22.1 19.6 18.9 23.0 20.0 23.1 19.3

TEST 11.8% 10.0% 10.0% 11.5% 11.5% 11.9% 9.6%
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Figure 2: Experiments on the two artificial datasets (Artificial0.0, on the left, and Artificial0.1, on
the right). The plots give training and test behavior as a function of the number of training epochs.
Notice that the test set in Artificial0.1 is affected by labelling noise of rate 10%. Hence, a visual
comparison between the two plots at the bottom can only be made once we shift down the y-axis of
the noisy plot by 10%. On the other hand, the two training plots (top) are not readily comparable.
The reader might have difficulty telling apart the two kinds of algorithms HOp(0.0) and HOp(c) with
c > 0. In practice, the latter turned out to be always slightly superior in performance to the former.

sification, having the ability to combine multiplicative (or nonadditive) and second-order behavior
into a single inference procedure. Like other algorithms, HOp can be extended (details omitted due
to space limitations) in several ways through known worst-case learning technologies, such as large
margin (e.g., [17, 11]), label-efficient/active learning (e.g., [5, 8]), and bounded memory (e.g., [10]).
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