
Hierarchical Clustering of Data Streams:
Scalable Algorithms and Approximation Guarantees

Anand Rajagopalan 1 Fabio Vitale 2 Danny Vainstein 3 Gui Citovsky 1 Cecilia M. Procopiuc 1 Claudio Gentile 1

Abstract

We investigate the problem of hierarchically clus-
tering data streams containing metric data in
Rd. We introduce a desirable invariance prop-
erty for such algorithms, describe a general fam-
ily of hyperplane-based methods enjoying this
property, and analyze two scalable instances of
this general family against recently popularized
similarity/dissimilarity-based metrics for hierar-
chical clustering. We prove a number of new
results related to the approximation ratios of these
algorithms, improving in various ways over the
literature on this subject. Finally, since our al-
gorithms are principled but also very practical,
we carry out an experimental comparison on both
synthetic and real-world datasets showing com-
petitive results against known baselines.

1. Introduction
Hierarchical clustering (HC) is a fundamental tool of data
analysis by which data items are grouped together based on
some notion of (semantic) similarity working at different lev-
els of granularity. The goal of a HC algorithm operating on
a dataset X is then to construct a tree whose leaves host the
data items in X , and whose internal nodes encode subsets
of X (that is, the clusters) at increasing levels of resolution
from root to leaves. Applications are ubiquitous, ranging
from phylogeny (e.g., (Eisen et al., 1998)) to data mining
and information retrieval (e.g., (Manning et al., 2008)), to
social network analysis (e.g., (Gilbert et al., 2011)), and
beyond.

In practice, HC methods are often deployed in data-intensive
applications, where massive datasets have to be hierarchi-
cally organized and connected to data-acquisition pipelines

1Google Research, NY, USA 2Lille University and INRIA
Lille, France 3Tel-Aviv University, Israel. Correspondence
to: Anand Rajagopalan <anandbr@google.com>, Fabio Vitale
<fabio.vitale@inria.fr>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

within highly dynamic (and typically non-stationary) en-
vironments. In these contexts, it is crucial to devise adap-
tive HC solutions that enable the handling of massive data
streams in a robust and efficient manner. In HC for data
streams, it is a common desideratum to have a fast way of
updating the hierarchy with the newly acquired data with-
out recomputing everything from scratch. Yet, at the same
time, we would like to do so without exposing ourselves to
unexpected temporal behaviors of the data stream that skew
the hierarchy towards undesirable configurations.

Contributions. In this paper, we present the general algo-
rithmic framework of hyperplane-based HC for data streams
containing metric data. The (randomized) algorithms origi-
nating from this framework are purely geometric algorithms
that can interchangeably be described as batch HC solutions
(the dataset X is given up front in its entirety) or dynamic
(aka sequential) HC solutions (the data points in X are dis-
closed one by one or in small batches). Crucially, within
our framework, the two solutions turn out to be statistically
equivalent, in that the statistical properties of the trees com-
puted in the batch mode are the same as those for trees
computed in the sequential mode. This means that the spe-
cific ordering of data by which the tree structure is grown
does not affect the properties of the final tree, thereby giving
our HC solutions a desirable robustness. We call this the
sequential property of HC algorithms (see Section 2 for a
formal definition). Moreover, the computed hierarchy is
fully online in the sense that points are inserted as siblings
of existing nodes, without changing the tree topology.

Quality measures: In order to evaluate the quality of our HC
solutions, we follow the recent trend initiated by Dasgupta
(2016), and further developed by a number of more recent
works (e.g., (Charikar & Chatziafratis, 2017; Cohen-addad
et al., 2019; Charikar et al., 2019b; Cohen-addad et al.,
2019; Naumov et al., 2020; Alon et al., 2020; Vainstein
et al., 2021)), who framed the HC problem as a combi-
natorial optimization problem over hierarchical structures
against exogenous pairwise similarity/dissimilarity informa-
tion on individual data points. In practice, as emphasized,
e.g., by Charikar et al. (2019b); Naumov et al. (2020), data
are often described by feature vectors, so that this pairwise
information can be naturally delivered by the underlying

HC in the Dynamic Setting

metric structure (e.g., `1 or `2) where data lies. In this
paper we consider several quality measures: CKMM Rev-
enue (Cohen-addad et al., 2019), MW Revenue (Moseley
& Wang, 2017), Dasgupta Cost (Dasgupta, 2016) and MW
Cost (a natural dissimilarity metric that, to our knowledge,
has not been investigated before).

From the general hyperplane-based HC framework, we fo-
cus on two scalable algorithms: the Random Cut Tree
(RCT) algorithm, originally proposed by Guha et al. (2016),
and the Uniform Radial Random Hyperplane (URRH) al-
gorithm, which is novel. We prove a number of new approx-
imation guarantees for these two algorithms, including the
following:

(i) For the CKMM Revenue, we prove that RCT (resp.
URRH) has a 0.9-approximation ratio when using the
`1 (resp. `2) distances as dissimilarities, which im-
proves on the 0.74 approximation ratio recently shown
by Naumov et al. (2020) for a computationally more
demanding algorithm;

(ii) For MW Revenue, when the similarity weights are de-
fined through inverse `1-distances 1/||x − y||1 (resp.
`2-distances) , we provide a 0.8-approximation ratio
for RCT (resp. URRH), while for the `2 Gaussian kernel
similarity, URRH improves (Figure 2) on the approxi-
mation guarantee contained in (Charikar et al., 2019b);

(iii) When similarity weights are defined in terms of `2-
distances in Rd, we show that URRH achieves an ap-
proximation of 1

3 + O(1/d3) for the MW Revenue,
yielding the first > 1

3 approximation for non-constant
d (in contrast to Charikar et al. (2019b) and Vainstein
et al. (2021)).

(iv) For the MW Cost, we provide a 2-approximation ratio
for RCT (resp. URRH) in the case when dissimilarities
are defined as `1-distances (resp. `2-distances).

We refer the reader to Table 2 in Section 4 for a summary
of results on RCT as well as to Theorems 5.2 and 5.3 in
Section 5 for the approximation guarantee of URRH.

Finally, we perform preliminary experiments on both syn-
thetic and real-world datasets, where we compare RCT and
URRH to known dynamic HC baselines. These experiments
show that, in terms of approximation quality, our algorithms
are on par with these baselines when the cluster separation
in the data is moderate, tend to outperform the baselines
in the presence of high level of noise (harder clustering
instances), and vice versa for low noise levels.

Related work. Most of the existing hierarchical clustering
solutions for streaming data are heuristics, e.g., Rodrigues
et al. (2006); Loewenstein et al. (2008); Nguyen et al. (2014).
The approach in Kobren et al. (2017) optimizes for a dif-
ferent quality measure, the so-called dendogram purity. In

our experimental evaluation, we include three of the most
popular previous approaches: BIRCH, PERCH and GRINCH.

Introduced by Zhang et al. (1996), BIRCH is a dynamic al-
gorithm that maintains a hierarchical clustering tree such
that every internal node contains the metadata correspond-
ing to its subcluster (Clustering-Feature). PERCH (Kobren
et al., 2017) is a dynamic clustering algorithm that performs
rotations to enhance subtree purity and balance. GRINCH
(Monath et al., 2019) is a dynamic clustering algorithm
that employs two key operations, rotate and graft, which
respectively handle local and global rearrangements.

Orthogonally, many theoretical results exist for the batch
case, wherein the dataset is given up front in its entirety.
This line of work may be divided into general instances and
metric-based instances.

General weights. Paving the way, Dasgupta (2016) first
framed the HC problem as an optimization problem. Cur-
rently the best known approximation to the Dasgupta Cost
is achieved through iterative sparsest cut, yielding an ap-
proximation factor of O(

√
log n) (Charikar & Chatziafratis,

2017; Cohen-addad et al., 2019). Furthermore, a constant
approximation does not exist assuming the Small Set Ex-
pansion (SSE) Hypothesis (Charikar & Chatziafratis, 2017).
Moseley & Wang (2017) introduced a maximization variant
of the problem. Under this objective (MW Revenue), state
of the art results include a 0.585 approximation factor (Alon
et al., 2020). Dissimilarity information is considered in
Cohen-addad et al. (2019) (CKMM Revenue). In this case,
the best approximation is known to be 0.74 (Naumov et al.,
2020). We note that both objectives (MW and CKMM) are
APX-hard assuming the SSE Hypothesis.

Metric-based weights. The MW objective has also been
studied in connection to metric-based instances. Charikar
et al. (2019b) considered the case where the similarity
weights are defined through a non-increasing function
g : R → [0, 1] applied to pairwise distances defined via
a metric. Vainstein et al. (2021) showed that if g admits
certain “nice properties” and the metric has constant dou-
bling dimension then there exists a 1− ε approximation for
any constant ε > 0. We note however, that this algorithm’s
running time is double exponentially dependent on 1

ε . Fur-
thermore, in order to handle data streams the tree must be
computed from scratch at each new insertion. Thus, the
algorithm is impractical in many real-world applications,
especially in dynamic settings.

We note that these objectives have been researched in many
more flavours: Structural constraints (Chatziafratis et al.,
2018), HC through hyperbolic embeddings (Chami et al.,
2020), and many others (Wang & Moseley, 2020; Charikar
et al., 2019a; Chatziafratis et al., 2020a).

Finally, it is worth mentioning that there has been work on

HC in the Dynamic Setting

4x 6x3x

T'

5x4x 6x 7x2x 8x1x 3x

i

T

T

3,4

Figure 1: Left: A hierarchical clustering T on the set X =
{x1, . . . , x8} made up of eight points laying on a line. Inter-
nal node i encodes the cluster {x1, . . . , x5} ⊆ X . Tree T1,4 is the
subtree rooted at lcaT (x1, x4) = i, with |T1,4| = 5. Notice that
i = lcaT (xj , xk) for j = 1, 2, 3, and k = 4, 5. Right: T ′ is the
restriction of T to triplet {x3, x4, x6}.

clustering of data streams when one is instead interested in
optimizing flat clusters of the data. Most relevant to us is the
work by Schmidt & Sohler (2019) on hierarchical diameter
k-clustering. Here, the data are first hierarchically clustered
and then each pointwise flat cluster (corresponding to a cut
in the hierarchical clustering tree) is considered. The goal
is to simultaneously minimize the median of each resulting
flat clustering. Though operating in a dynamic setting, the
resulting algorithms are of different flavor than ours due to
the significant difference in objectives. Further work on flat
clustering of data streams includes, e.g., Lin et al. (2010);
Chen (2009).

2. Preliminaries and basic notation
In its standard formulation, in the HC problem we are given
a set1 of n items X = {x1, . . . , xn}, and the goal is to
construct a (binary) tree T whose leaves are the n items
above so as to optimize some criterion. The tree encodes
a clustering of X at different levels of granularity. Each
internal node i of T can be naturally viewed as the cluster
(that is, the subset of X) made up of all the leaves in the
subtree rooted at i. Given leaves xi and xj of T , we denote
by Ti,j the subtree rooted at the lowest common ancestor
lcaT (xi, xj) of xi and xj in T , while |Ti,j | denotes the
number of leaves in Ti,j . See Figure 1 (left) for a simple
illustration.

Following the recent trend in the HC literature, we cast
the problem as an optimization problem (e.g., (Dasgupta,
2016; Moseley & Wang, 2017; Wang & Wang, 2018; Cohen-
addad et al., 2019; Alon et al., 2020; Charikar et al., 2019a;b;
Chatziafratis et al., 2020b; Wang & Moseley, 2020; Naumov
et al., 2020)), where an objective function is constructed that
only depends on information about the pairwise similarity
or pairwise dissimilarity over the points in X . Moreover,
we assume the data are described by suitable feature vectors,
so that the items in X lie within a suitably bounded subset
of Rd, for some input dimension d ≥ 1, and the pairwise

1 This set may actually contain repeated items.

information is then a function of the feature vectors alone.
This pairwise information may be encoded either through
a similarity function sim : Rd × Rd → R, for instance:
sim(xi, xj) = xi · xj , the inner product between xi and xj ;
or sim(xi, xj) = exp (−||xi − xj ||22/2σ2), the Gaussian
kernel between xi and xj at scale σ > 0; or sim(xi, xj) =
D−||xi−xj ||, where || · || is some norm over Rd, and D is
some notion of diameter of the set of points X; or through
a dissimilarity function, dissim : Rd × Rd → R, e.g.,
dissim(xi, xj) = ||xi − xj ||. A meaningful definition that
connects sim(·, ·) to dissim(·, ·) is simply sim(xi, xj) =
−dissim(xi, xj).

Notation-wise, when the pairwise information represents
similarity, we collectively denote it by a weight matrix
[wi,j]

n
i,j=1; when it represent dissimilarity we use instead

matrix [di,j]
n
i,j=1. A number of objectives can then be de-

fined, depending on whether we want to maximize similarity
or minimize dissimilarity (see Table 1 for reference). The
MW Revenue (Moseley & Wang, 2017) of tree T on sim-
ilarity matrix [wi,j], denoted here as2 RevS(T), is defined
as

RevS(T) =

n∑
i,j=1

wi,j(n− |Ti,j |) ,

and the goal is to find a tree T such that the approxima-
tion ratio RevS(T)/OptRevS

is as large as possible, where
OptRevS

= maxT RevS(T) is the largest (“optimal”) pos-
sible revenue any tree T can achieve on the given [wi,j].
The other objectives (CKMM Revenue (Cohen-addad et al.,
2019), Dasgupta Cost (Dasgupta, 2016), and MW Cost3)
are defined analogously – please refer to Table 1 – and so
are the corresponding optima and approximation ratios. For
instance, when dealing with dissimilarity information and
costs, we have OptCostD = minT CostD(T) and the goal
is to find T so as to make the ratio CostD(T)/OptCostD as
small as possible.

Optimizing the above objectives exactly is know to be NP-
hard (Dasgupta, 2016; Cohen-addad et al., 2019), hence the
recent flurry of papers (e.g., (Dasgupta, 2016; Cohen-addad
et al., 2019; Charikar et al., 2019a;b; Alon et al., 2020;
Chatziafratis et al., 2020b; Naumov et al., 2020)) looking
for fast approximation algorithms.

In this paper, we are specifically interested in HC algorithms
having the sequential property, as defined next.

Definition 2.1. Given a set of n items X = {x1, . . . , xn},
denote by Ti = A(〈x1, . . . , xi〉) the (random) output of
a HC algorithm A having input {x1, . . . , xi}, and let
T ′ = Ins(T, x) denote a (randomized) insertion operation

2 In these notations, we leave the dependence on [wi,j] or [di,j]
implicit, no ambiguity will arise.

3 This is a natural dissimilarity metric, although it does not
seem to have been investigated previously.

HC in the Dynamic Setting

Objective Type Name Symbol
max

∑
i,j wij(n− |Tij |) Sim. Rev. MW Rev. RevS

max
∑
i,j dij |Tij | Diss. Rev. CKMM Rev. RevD

min
∑
i,j wij |Tij | Sim. Cost Dasgupta Cost CostS

min
∑
i,j dij(n− |Tij |) Diss. Cost MW Cost CostD

Table 1: HC objectives. In the above, we abbreviated “similarity”
by “Sim.”, “Dissimilarity” by “Diss., and “Revenue” by “Rev”.
The type of objective refers to whether it deals with similarity or
dissimilarity information and that the goal is to maximize (revenue)
or minimize (cost).

that adds a new leaf x to tree T , producing in output the
augmented tree T ′. We say that A has the sequential prop-
erty w.r.t. Ins if, for all item sets X , and all i = 1, . . . , n,
the random variable Ti has the same distribution over trees
as the random variable Ins(Ti−1, xi), where T0 is the empty
tree.

In other words, A has the sequential property if it admits
an exogenous insertion procedure Ins such that building
the tree incrementally by inserting one leaf after the other
through Ins yields the same statistical properties as if the
tree were constructed by A looking at all data in batch.
Hence, if the tree constructed by A has approximation ra-
tio r (in expectation over the internal randomization of A)
then so does the tree incrementally constructed by Ins (in
expectation over the internal randomization of Ins). Also,
observe that this equivalence holds independent of the order
in which Ins processes the n items.

In the next section (Section 3), we develop a general frame-
work for hyperplane-based hierarchical clustering which
encompasses a family of dynamic algorithms for that task.
Then, in the two subsequent sections, we shall describe and
analyze two members of this family. The first one (Random
Cut Tree Algorithm, Section 4) operates with axis-aligned
hyperplanes, and is suited to the `1-based objectives con-
tained in Table 1, on a variety of definitions for wi,j and
di,j . The second one (Uniform Radial Random Hyperplane
Algorithm, Section 5) operates with general hyperplanes,
and is suited to the analogous `2-based objectives (Theorem
5.2). In addition, it enjoys an unconditional approximation
guarantee (Theorem 5.3) for the weights defined by case 1
of Table 1. For both algorithms, we show that they can (i) be
implemented efficiently, (ii) cater to `1-based and `2-based
geometry respectively, and (iii) enjoy good approximation
guarantees.

3. Hyperplane-based hierarchical clustering
Let Graffd−1(Rd) be the manifold of all (d − 1)-
dimensional affine subspaces (that is, hyperplanes) of Rd.
Let µ be a nonnegative measure on Graffd−1(Rd) that is
finite on compact sets. With such a µ, we associate a HC
algorithm Aµ, as described next.

Objective Metric (L1) Approx. Random
1. MW Rev* L1-similarity 0.73 5/9
2. Dasgupta Cost* L1-similarity 2 ∞
3. CKMM Rev L1-distance 0.90 2/3
4. MW Cost L1-distance 2 ∞
5. MW Rev Inverse distance 0.80 1/3
6. Dasgupta Cost Inverse distance 1.5 ∞
7. MW Rev Gauss. Kernel Figure 2 1+2δ

3

8. MW Rev Abs. Exp. Kernel Figure 2 1+2δ
3

Table 2: RCT approximation guarantees for different objectives
and metrics. All metrics are L1-based. Only the first two cases
(*) require Assumption 4.4. The last two cases assume that the
weights are in [δ, 1], for some δ ∈ (0, 1]. The last column is the
approximation achieved by the baseline RANDOM that returns a
binary tree on the leaves, which is chosen uniformly at random.

Given finite X ⊂ Rd as input, denote by Conv(X) the
convex hull of X . Then the set HX of hyperplanes of
Graffd−1(Rd) that intersect Conv(X) is compact, and
hence µ(HX) < ∞. Let µX = µ/µ(HX) be the prob-
ability measure induced on HX by restricting to HX and
normalizing to 1. On input X , algorithm Aµ:

1. Samples a random hyperplane HX ∼ µX ;

2. Partitions X into Y and Z according to HX (points
lying on HX can be arbitrarily assigned to either Y or
Z).

3. Recurses on Y and Z using the probability measures
µY and µZ , respectively.

Applying the above until we arrive at singleton sets, we
construct a (random) binary tree T with leaves the points
in X , based on the partitions induced by the sampled hy-
perplanes. Such T is the output of Aµ on input X . The
key observation now is that for any set of points Y ′ with
Conv(Y) ⊆ Conv(Y ′), we have HY ⊆ HY ′ , and thus
µY = µY ′ |Y , the probability measure of µY ′ conditioned
on Y . Thus we may rephrase Step 3 above as rejection-
sampling from µY ′ conditioned on the sampled hyperplane
intersecting Conv(Y) (resp. Conv(Z)).

If we have a way of sampling efficiently from the hyperplane
probability measures, the main property of algorithm Aµ is
that it leads to a natural algorithm for HC with the sequential
property.4

Theorem 3.1. Let µ be a nonnegative measure on
Graffd−1(Rd) which is finite on compact sets, and suppose
there is an efficient way to sample from µX for all finite sets
X . Then, there is an efficient insertion operation Insµ such
that Aµ has the sequential property w.r.t. Insµ.

In particular, recall that this means that the (random) tree
generated by Insµ is independent of the order in which Ins
processes the inserted items. The general pseudocode for

4 All proofs are given in the supplementary material.

HC in the Dynamic Setting

Insµ is given in Appendix A. In the following sections, we
specify particular measures µ from which hyperplanes can
be efficiently sampled and which additionally give rise to
HC algorithms having the sequential property, and exhibit-
ing good approximation ratios for the metrics of Section
2. The associated insertion operations are presented in the
corresponding sections of the appendix.

Remark 3.2. It is important to stress that the above algo-
rithm, as well as its by-products in later sections, do not take
as input the pairwise information encoded by [wi,j] or [di,j].
These algorithms are purely geometric algorithms that will
exhibit strong approximation properties, provided the pair-
wise information we use at evaluation time to compute the
metrics in Table 1 is reasonably aligned with the geometry
these algorithms rely upon. Further examples of this sort
are the Projected Random Cut algorithm in (Charikar et al.,
2019b), as well as the dynamic algorithms we compare to
in our experimental investigation (Section 6).

4. Random Cut Tree approximation
In this section we discuss a special case of hyperplane-based
clustering known as the Random Cut Tree (RCT) which has
been introduced by Guha et al. (2016) in the context of
anomaly detection. We provide approximation results for
related similarity and dissimilarity objectives (from Table 1).
In the case of dissimilarity objectives, we use the distances
themselves as the dissimilarity measure.

An RCT (batch algorithm) T (X) on item set X ⊆ Rd is a
tree-valued random variable generated as follows:

• Draw random index I ∈ [d] with probability P[I =
i] = li∑d

i=1 li
, where

li = max
x∈X

(x)i −min
x∈X

(x)i ,

with (x)i denoting the i-th component of vector x.
Hence the above probability is proportional to the side
lengths of the (axis-parallel minimum) bounding box
of X;

• Draw threshold θ uniformly at random in the interval
[minx∈X xI ,maxx∈X xI];

• Let X1 = {x |x ∈ X, (x)I ≤ θ} and X2 = X\X1

correspond to the left and right subtrees of the root
of T (X), and recurse on X1 and X2, until T (X) is a
(singleton) leaf.

We have the following characterization of RCT:

Fact 4.1. Fix dimension d, and let Hi,v = {x ∈ Rd |xi =
v}, where xi is the i-th component of vector x. Let then
H = {Hi,v | i ∈ [d], v ∈ R} be the set of axis-parallel

hyperplanes. For H′ ⊂ H, define µRCT by µRCT(H′) =∑d
i=1 µL({v ∈ R |Hi,v ∈ H′}), where L is the standard

Lebesgue measure on R. Then AµRCT
(resp. InsµRCT

) is the
offline (resp. dynamic) RCT algorithm.

In (Guha et al., 2016), it is shown (Theorem 3 therein)
that an RCT can be maintained over a set of points X that
is dynamically updated with streaming data in sub-linear
update time and O(dn) space. The pseudocode for the
insertion operation (adapted from (Guha et al., 2016)) is
given in Appendix B.

The analysis of RCT with respect to the HC objectives in
Table 1 rests on an important restriction property that this
algorithm enjoys.

Definition 4.2. Given tree T on the set of leaves X , and
R ⊆ X , the restriction of T to R is the tree obtained by
deleting the leaves of T in X \R (along with their edges),
and contracting edges to obtain a binary tree whose leaves
are identified with R. In particular, if R is a triplet R =
{xi, xj , xk}, the restriction of T to R when lcaT (xi, xj) is
a descendant of lcaT (xi, xk) is the tree where xi, xj are
siblings, and xk is a sibling of their parent (and similarly
for the other cases). See Figure 1 (right) for an illustration.

Lemma 4.3. LetX ⊆ Rd be a set of items. For anyR ⊆ X ,
the restriction of the RCT T (X) (that is, the output of RCT
on input X) to subset R has the same distribution as T (R).

In fact all algorithms from the familyAµ enjoy this property
(see the supplementary material for a proof). We will use
this result in the particular case of R being a generic triplet
{xi, xj , xk}.

RCT as characterized in Fact 4.1 can be seen as naturally
operating in an `1 geometry. We now introduce a necessary
assumption in order to obtain competitive approximation
guarantees for RCT in the case of similarity-based objec-
tives (MW Revenue and Dasgupta Cost) for the `1 similarity
measure wi,j = D − di,j , where di,j = ||xi − xj ||1 and
D = maxi,j di,j . As we shall see momentarily, this assump-
tion will not be required by dissimilarity-based objectives
(CKMM Revenue and MW Cost).

Assumption 4.4. We assume
(
n
3

)−1∑
i<j<k(di,j + di,k +

dj,k)/2 ≤ D = maxi,j di,j . Observe that we have
maxi,j,k(di,j + di,k + dj,k)/2 ≤ 3D

2 always, so this also
follows under the modified similarity wi,j = 3

2D − di,j .
The weights are now in the range [D2 ,

3D
2], and in this

case, RANDOM gives a baseline revenue approximation
of 3D/2+D/2+D/2

3(3D/2) = 5
9 .

The reason for Assumption 4.4 is the following. RCT is
a geometric algorithm whose cuts of triplets {xi, xj , xk}
depend on the distances di,j , di,k, and dj,k. Allowing the
similarity weights wi,j to have ratios substantially differ-

HC in the Dynamic Setting

ent from the corresponding ratios of the di,j’s can lead to
adversarial situations, as we illustrate next.
Example 4.5. Let V ⊂ R3 consist of the points x1 =
(1 + ε, 0, 0), x2 = (0, 1, 0), and x3 = (0, 0, 1). We have
D = d1,2 = d1,3 = 2 + ε, d2,3 = 2, w1,2 = w1,3 = 0, and
w2,3 = ε. Thus RevOptS = ε. On the other hand, being
based on the `1 geometry, RCT makes the cuts with approxi-
mately equal probabilities, which leads to an approximation
ratio of 1/3 +O(ε), that is, very close to the trivial approx-
imation ratio of 1/3 achieved on RevS by a random binary
tree (Moseley & Wang, 2017).

Theorem 4.6. RCT satisfies the approximation guarantees
for the combination of objectives and metrics listed in Table
2. In detail, for each combination of revenue (resp. cost)
objective Obj, metric m, and approximation factor α in
Table 2, we have the approximation guarantee that for all
X ⊆ Rd endowed with metric m, E[Obj(RCT(X))] ≥
αOptObj(X) (resp. ≤), where the expectation is over the
internal randomization of RCT, and X satisfies Assumption
4.4 in the first two cases.

While Theorem 4.6 covers a diverse range of objectives and
metrics, the proof technique is similar. We sketch the main
idea in the case of MW Revenue with `1-similarity.

The following length-proportional cut property of the RCT
algorithm is a main ingredient of our approximation results.

Lemma 4.7. Given input X and a cut HX sampled from
µX , the probability pi,j that xi and xj are split by H is
proportional to their `1 distance di,j .

A consequence of Lemma 4.7 which we need for the proof
of Theorem 4.6 is the following lemma.
Lemma 4.8. Fix a triplet {xi, xj , xk} of X . Then the prob-
ability, pi,j|k, that RCT T (X) separates xi and xj from xk
is given by

pi,j|k =
di,k + dj,k − di,j
di,j + di,k + dj,k

,

and similarly for pi,k|j and pj,k|i.

We use below the cyclic sum notation
∑

cyc f(i, j, k) =

f(i, j, k) + f(j, k, i) + f(k, i, j). For a tree T , and a triplet
of leaves i, j, k, we write ij|k to mean that lcaT (i, j) is a
descendant of lcaT (i, k).

Proof of Theorem 4.6– sketch. Fix input X =
{x1, . . . , xn}. Given a tree T on X , note that we
can rewrite the MW Revenue

∑
i,j wi,j(n − |Ti,j |) as the

triplet-wise sum
∑
i<j<k Revi,j,k(T), where

Revi,j,k(T) =


wi,j if ij|k in T
wi,k if ik|j in T
wj,k if jk|i in T .

(1)

Figure 2: Approximation ratio for absolute exponential kernel and
Gaussian kernel with weights wi,j ∈ [δ, 1]. RCT (resp. URRH)
satisfy these guarantees with the `1 (resp. `2) distances in these
kernels.

Now, from Lemma 4.8, for tree TRCT(X) computed by RCT
on X we can write

E[Revi,j,k(T (X))] =
∑
cyc

di,k + dj,k − di,j
di,j + di,k + dj,k

(D − di,j) .

On the other hand, we also have the upper bound
Revi,j,k(TOpt(X)) ≤ max{D− di,j , D− di,k, D− dj,k},
where TOpt(X) is the optimal tree on X . It now remains
to use these expressions to prove the required approxima-
tion bound, which reduces to a tractable optimization prob-
lem.

We have shown that RCT enjoys good approximation guar-
antees for `1-based measures. In the following section, we
introduce a new algorithm URRH that matches RCT ’s ap-
proximation guarantees for `2-based similarity measures.
To conclude this section, we introduce a simple extension
of RCT that achieves weaker guarantees than URRH, but
is of theoretical interest. Namely, we define the Projected
Random Cut Tree (PRCT) algorithm as follows:

Definition 4.9. Given input X and projection dimension
k, PRCT(k) applies RCT to (Pxi)

n
i=1, where P is a k × d

Gaussian projection matrix with i.i.d. entries.

We remark that when k = 1, PRCT reduces to the projected
random cut algorithm from (Charikar et al., 2019b).

We have the following guarantees for PRCT:

Theorem 4.10. Fix ε, δ > 0. Consider a revenue case
from Table 2 (cases 1, 3, 5, 7, 8) but with the correspond-
ing `2 metric. Let α be the corresponding approximation
guarantee of RCT under `1 metric. Then there exists an ab-
solute constant c such that with probability 1−δ, PRCT with
k = c log(n/δ)/ε2 achieves an expected approximation of
α− ε in the `2 metric.

HC in the Dynamic Setting

Theorem 4.11. Fix ε, δ > 0. Consider a cost case from
Table 2 (cases 2, 4, 6) but with the corresponding `2 metric.
Let α be the corresponding approximation guarantee of
RCT under `1 metric and assume that the weights lie in
the range [γ, 1] for arbitrarily small but positive γ. Then
there exists an absolute constant c such that with probability
1− δ, PRCT with k = c log(n/δ)/ε2 achieves an expected
approximation of α+ ε in the `2 metric.

5. Uniform radial random hyperplane
approximation

The second hyperplane-based HC algorithm we present
is the URRH (Uniform Radial Random Hyperplane) Algo-
rithm.

At each recursive step, URRH takes as input a subset C ⊆ X
of the input items X , and any (d − 1)-sphere S(C) con-
taining all points of C. The algorithm randomly cuts S(C)
to split C into C ′ and C ′′. Whenever the cut makes either
C ′ or C ′′ empty, the hyperplane is rejected, and a new cut
is drawn until C ′, C ′′ 6= ∅. Finally, as in RCT, the URRH
algorithm recurses on C ′ and C ′′ until the input becomes a
singleton.

The details (pseudocode) of URRH are given in Appendix C.
Below we give an idea of the key steps.

Each random hyperplane is selected through a two-step
process: (i) A direction in Rd is selected by choosing a
unit vector p uniformly at random, and (ii) a hyperplane
orthogonal to p is selected among those intersecting S(C).
More precisely, at each recursive step, URRH operates as
follows:

• Direction p is selected uniformly at random from Sd−1,
the unit (d− 1)-sphere;

• Let S(C) be any (d−1)-sphere containing all items in
C (e.g., S(C) is the circumsphere of Conv(C)).5 Let r
and c be the radius and the center of S(C). Hyperplane
Hp,b(S(C)) := {x ∈ Rd : x · p = b} is generated
by drawing b uniformly at random from the interval
[c · p− r, c · p+ r].

• If Hp,b(S(C)) cuts C, i.e., it splits C into C ′ and C ′′

such that C ′, C ′′ 6= ∅, then we recurse on C ′ and C ′′,
otherwise we reject Hp,b(S(C)) and generate it again
(by re-drawing p and b)).

From the above, a clear computational trade-off emerges
between calculating a (d − 1)-sphere S(C) having small
radius, and the number of hyperplanes that get rejected. As
mentioned in Appendix C, there are several strategies to

5 That is, the smallest sphere enclosing all the points of
Conv(X).

resolve this trade-off. For now, we just anticipate that, for
any d ∈ N and any C, the probability that Hp,b(S(C)) is
not rejected is at least c√

d
for a constant c, and decreases

linearly in the radius of the sphere S currently used by URRH
(see the formal statement in Lemma C.5 in Appendix C).

We have the following characterization of URRH as a mem-
ber of the general hyperplane-based family.

Fact 5.1. Fix dimension d, letHu,v = {x ∈ Rd |x ·u = v},
and H = {Hu,v |u ∈ Sd−1, v ∈ R} be the set of all
hyperplanes in Rd. Define µURRH(H′) =

∫
u∈Sd−1 µL({v ∈

R |Hu,v ∈ H′}dν for H′ ⊂ H, where µL is the Lebesgue
measure on R and ν is the uniform measure on Sd−1. Then
AµURRH

(resp. InsµURRH
) is the offline (resp. dynamic) URRH

algorithm.

In fact, URRH satisfies Lemma 4.7 with di,j now represent-
ing `2 distances. The same proof machinery for Theorem
4.6 thus applies to URRH for the case that all measures are
`2-based, and we have the following result.

Theorem 5.2. URRH satisfies the same approximation guar-
antees as RCT given in Theorem 4.6, with `2-based mea-
sures under the equivalent `2 analog of Assumption 4.4 for
the first two cases.

We also have the following unconditional approximation
ratio guarantees, for the case of RevS and similarity weights
defined as wi,j := D − di,j , where di,j is the Euclidean
distance between xi and xj , and D = max1≤i<j≤n di,j is
the maximal distance over all pairs of points inX . The result
states that the MW Revenue of URRH is strictly larger than
the trivial 1

3 approximation ratio6 for any input dimension
d > 3, whenever n is not too small w.r.t. to d.

Theorem 5.3. Given any input set X = {x1, . . . , xn} ⊆
Rd, with d > 3, the approximation ratio E[RevS(URRH(X))]

OptRevS

is

lower bounded by 1
3 + g(d, n), where g(d, n) is a function

of d and n such that g(d, n) > 0 for all n > 605
116d ≈ 5.22d.

In particular, if n ≥
(

9 + 38
d−3.98

)
d and d > 3, we have

E[RevS(URRH(X))] ≥
(

1

3
+

1

31d3

)
OptRevS

.

In the above, the expectation is over the internal randomiza-
tion of URRH.

Notice that condition d > 3 does not really limit the scope
of Theorem 5.3, since one can always pad the input vectors
with dummy components that do not alter pairwise distances,
so as to force d ≥ 4. Moreover, it is also worth observing
that for all d < 8, the requirement n ≥

(
9 + 38

d−3.98

)
d

6 Recall that approximation ratio 1/3 can be trivially achieved
in expectation by a randomly generated tree (Moseley & Wang,
2017).

HC in the Dynamic Setting

becomes less stringent if one pads the input so as to force
d = 8. This implies that 148 =

⌈(
9 + 38

8−3.98

)
8
⌉

input
points are always sufficient when d ≤ 8. Finally, the special
case d = 1 can be treated separately (see Theorem D.1 in
the appendix) obtaining an expected MW revenue larger
than the one of Theorem 5.3.

As mentioned in Fact 5.1, URRH has the sequential property
(Definition 2.1). The pseudocode of the insertion procedure
is detailed in Algorithm 5 in Appendix C.

6. Experiments
In this section, we demonstrate experimentally that RCT
and URRH perform competitively compared to other well-
known dynamic HC algorithms. In particular, we compare
to BIRCH (Zhang et al., 1996), PERCH (Kobren et al., 2017),
and GRINCH (Monath et al., 2019). Additionally, we com-
pare all algorithms to the RANDOM baseline that builds a
tree at random, and to PROJECTED RANDOM CUT (Charikar
et al., 2019b) on a line, which can be made dynamic by
applying RCT to the projected dataset. The objectives con-
sidered are MW Revenue, MW Cost, CKMM Revenue and
Dasgupta Cost.

We evaluate these algorithms on both synthetic and real-
world datasets. For synthetic datasets, we evaluate the
performance of these algorithms in both noisy and well-
separated settings. In particular, we draw 10K examples
from standard Gaussians in R2. In the noisy setting, we
draw from one Gaussian, and in the well-separated setting,
we draw from two Gaussians with centers separated by
four standard deviations in one direction. We denote these
datasets by OneG, resp. TwoG. For real-world datasets,
we compare the algorithms on the following data of vary-
ing scale: MNIST, ALOI (Geusebroek et al. (2005)), and
ILSVRC12 (Deng et al. (2009)) trained with ResNet34
architecture. We note that when considering our (four) ob-
jectives, the resulting trees must be binary. All algorithms
other than BIRCH output binary trees and thus do not need
to be modified. In order to handle BIRCH, we follow the
methodology of (Naumov et al., 2020) and simply assign
the value of a random partitioning to all data point triplets
that share the same lca in the tree. For an extended explana-
tion see (Naumov et al., 2020), Appendix B.1 therein. For
hardware, we used machines with a maximum of 125GB of
RAM and 16 CPUs.

Methodology. For each of these experiments, we
randomly permute the datasets and stream each one
in the preprocessed order consistently across algo-
rithms. We evaluate each of the aforementioned mea-
sures on the produced hierarchies, as follows: We
sample 10K triplets T ′ from each dataset, then com-
pute the measures restricted to these triplets. For the

MW Revenue, this is
∑

(i,j,k)∈T ′ Revi,j,k(T) (see Equa-
tion 1). We also report the measures for RANDOM :∑

(i,j,k)∈T ′(wi,j + wj,k + wi,k)/3 and an upper (resp.
lower) bound for the optimal revenue (resp. cost):∑

(i,j,k)∈T ′ max (resp. min)(wi,j , wj,k, wi,k) (see (Nau-
mov et al., 2020)).7 Finally, for RCT, URRH and PROJECTED
RANDOM CUT, the output trees are non-deterministic, so
we report the average over 10 different runs.

Table 3 compares MW Revenue using RBF kernel sim-
ilarity RBF(x, y) = e−||x−y||

2
2/2σ

2

across all algorithms.
Note that this is a function of the `2 distance, which we
have chosen for uniform comparison across all algorithms.
We choose σ as the mean `2 distance between pairs of
points. This is to ensure a reasonable distribution of simi-
larity weights. We defer the results for MW Cost, CKMM
Revenue and Dasgupta Cost to the appendix, but note that
they show similar trends. The following conclusions can be
drawn:

(1) RCT and URRH achieve the highest revenue for OneG, a
noisy setting in which there is no obvious way to split
the data into two clusters at the root level. By contrast,
they are outperformed by BIRCH, PERCH and GRINCH
on TwoG, where the two clusters are well separated. We
believe this can be explained by the fact that the base-
line approaches rely heavily on clusters and/or nearest
neighbor information to build the trees. On the other
hand, RCT and URRH split the data by random cuts that
are less sensitive to local data densities. Thus, the base-
lines take advantage of well-separated datasets, while
RCT and URRH are more robust on noisy data.

(2) BIRCH, PERCH and GRINCH perform reasonably well
for these objectives even though they are not explicitly
designed to do so. We offer two reasons for this. First,
in many of our experiments, RANDOM turned out to per-
form reasonably (and sometimes surprisingly) well; a
similar phenomenon has been experimentally observed
in (Naumov et al., 2020). When this happens, there
is not much room for improvement across the various
algorithms. Second, in order to ensure a fair compar-
ison, in our experiments each dataset was randomly
shuffled. This does not affect RCT and URRH, but it
might have potentially eliminated unfavorable orderings
of data for BIRCH, PERCH and GRINCH, thereby giving
these competitors some advantage.

(3) RCT and URRH perform competitively compared to all
other algorithms on the real-world datasets we tested,
where clusters are moderately well-separated. Unlike
BIRCH, PERCH and GRINCH, the practical relevance of
RCT and URRH is complemented by their approximation

7 These metrics are computed by sampling triplets, since exact
computation would be unwieldy. The extra variance generated in
the results turns out to be negligible.

HC in the Dynamic Setting

MNIST ILSVRC12 ALOI OneG TwoG

RCT 0.93±0.01 0.94±0.0 0.91±0.01 0.9±0.01 0.9±0.06
URRH 0.93±0.0 0.94±0.0 0.9±0.01 0.9±0.01 0.9±0.03
BIRCH 0.93 0.94 0.91 0.87 0.98
PERCH 0.92 0.94 0.91 0.87 0.90

GRINCH 0.93 0.93 0.89 0.88 0.97
PROJECTED RANDOM CUT 0.92±0.0 0.94±0.0 0.88±0.01 0.87±0.0 0.86±0.07

RANDOM 0.92 0.93 0.85 0.74 0.71
UPPER BOUND 1.0 1.0 1.0 1.0 1.0

Table 3: MW Revenue approximation factors using RBF kernel similarity; ↑ is better. Each revenue is shown as a percentage of the
corresponding upper bound for that dataset.

guarantees.

7. Conclusions and ongoing activity
We have introduced the general framework of hyperplane-
based HC for data streams in metric spaces. We have given a
general family of algorithms indexed by a sampling probabil-
ity over hyperplanes. Each algorithm in this family admits
two formulations, batch and sequential, whose (statistical)
equivalence ensures a desirable robustness to data arrival
order. We have studied two fast HC algorithms originating
from this general family, and provided a number of approxi-
mation guarantees w.r.t. known objective functions, some of
which improve on the available literature on HC. In addition,
the algorithms are simple to implement, requiring only the
selection of a splitting hyperplane in each node. New points
are inserted as siblings of existing nodes, without the need
to perform other changes in the tree structure.

We have run initial experiments on synthetic and real-world
metric data, where the trend that seems to emerge is that our
randomized algorithms are on par with celebrated dynamic
HC baselines in the presence of moderate noise levels, tend
to outperform these baselines with higher noise rate and be
outperformed in the opposite case of clear cluster separation.

An interesting research direction is to generalize the family
of hyperplane-based HC to richer separation classes, which
would give us higher flexibility, while still retaining the
crucial benefits of the dynamic solutions.

We conclude by mentioning a couple of additional results
we obtained for the MW Revenue maximization problem
on one-dimensional data, with weights wi,j := D − di,j ,
and n→∞. We proved (see Appendix D) that the approxi-
mation ratio of RCT is at least 0.8303. We also developed
two very fast deterministic algorithms for the batch setting,
achieving approximation ratios of 3

4 and 1
2 , respectively. In-

terestingly enough, the latter is always obtained by simply
building a caterpillar tree, and has also a 3

4 -approximation
ratio for the CKMM Revenue.

References
Ailon, N. and Chazelle, B. The fast johnson-lindenstrauss

transform and approximate nearest neighbors. SIAM Jour-
nal on Computing, 39(1), 2009.

Alon, N., Azar, Y., and Vainstein, D. Hierarchical clustering:
A 0.585 revenue approximation. In Proceedings of Thirty
Third Conference on Learning Theory, volume 125, pp.
153–162. PKLR, 2020.

Chami, I., Gu, A., Chatziafratis, V., and Ré, C. From trees
to continuous embeddings and back: Hyperbolic hier-
archical clustering. In Advances in Neural Information
Processing Systems 33 (NeurIPS 2020), 2020.

Charikar, M. and Chatziafratis, V. Approximate hierarchical
clustering via sparsest cut and spreading metrics. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, (SODA), pp. 841–
854, 2017.

Charikar, M., Chatziafratis, V., and Niazadeh, R. Hierarchi-
cal clustering better than average-linkage. In Proceedings
of the Thirtieth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pp. 2291–2304. Society for Industrial
and Applied Mathematics, 2019a.

Charikar, M., Chatziafratis, V., Niazadeh, R., and Yaroslavt-
sev, G. Hierarchical clustering for euclidean data. In
Proceedings of Machine Learning Research, volume 89,
pp. 2721–2730. PMLR, 2019b.

Chatziafratis, V., Niazadeh, R., and Charikar, M. Hierarchi-
cal clustering with structural constraints. In Proceedings
of the 35th International Conference on Machine Learn-
ing, (ICML 2018), pp. 773–782, 2018.

Chatziafratis, V., Gupta, N., and Lee, E. Inapproximability
for local correlation clustering and dissimilarity hierar-
chical clustering. CoRR, abs/2010.01459, 2020a.

HC in the Dynamic Setting

Chatziafratis, V., Yaroslavtsev, G., Lee, E., Makarychev, K.,
Ahmadian, S., Epasto, A., and Mahdian, M. Bisect and
conquer: Hierarchical clustering via max-uncut bisection.
In Proceedings of the Twenty Third International Confer-
ence on Artificial Intelligence and Statistics, volume 108,
pp. 3121–3132. PMLR, 2020b.

Chen, K. On coresets for k-median and k-means clus-
tering in metric and euclidean spaces and their appli-
cations. SIAM J. Comput., 39(3):923–947, 2009. doi:
10.1137/070699007. URL https://doi.org/10.
1137/070699007.

Cohen-addad, V., Kanade, V., Mallmann-trenn, F., and Math-
ieu, C. Hierarchical clustering: Objective functions and
algorithms. J. ACM, 66:4, 2019.

Dasgupta, S. A cost function for similarity-based hierarchi-
cal clustering. In Proceedings of the 48th annual ACM
symposium on Theory of Computing, pp. 118127, 2016.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In IEEE Conference on Computer Vision and Pattern
Recognition, pp. 248–255, 2009.

Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein,
D. Cluster analysis and display of genomewide expres-
sion patterns. Proceedings of the National Academy of
Sciences, 95(25):14863–14868, 1998.

Geusebroek, J.-M., Burghouts, G. J., and Smeulders, A. W.
The amsterdam library of object images. International
Journal of Computer Vision, 61(1):103–112, 2005.

Gilbert, F., Simonetto, P., Zaidi, F., Jourdan, F., and Bourqui,
R. Communities and hierarchical structures in dynamic
social networks: Analysis and visualization. Social Net-
work Analysis and Mining, 1(2), 2011.

Guha, S., Mishra, N., Roy, G., and Schrijvers, O. Robust
random cut forest based anomaly detection on streams.
In Proceedings of The 33rd International Conference on
Machine Learning, volume 48, pp. 2712–2721. PMLR,
2016.

Kobren, A., Monath, N., Krishnamurthy, A., and McCallum,
A. A hierarchical algorithm for extreme clustering. In Pro-
ceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp.
255–264. Association for Computing Machinery, 2017.

Li, S. Concise formulas for the area and volume of a hy-
perspherical cap. Asian Journal of Mathematics and
Statistics, 4(1):66–70, 2011.

Lin, G., Nagarajan, C., Rajaraman, R., and Williamson, D. P.
A general approach for incremental approximation and

hierarchical clustering. SIAM J. Comput., 39(8):3633–
3669, 2010. doi: 10.1137/070698257. URL https:
//doi.org/10.1137/070698257.

Loewenstein, Y., Portugaly, E., Fromer, M., and Linial, M.
Efficient algorithms for accurate hierarchical clustering
of huge datasets: tackling the entire protein space. In
Proceedings 16th International Conference on Intelligent
Systems for Molecular Biology (ISMB), pp. 41–49, 2008.

Manning, C. D., Raghavan, P., and Schütze, H. Introduction
to Information Retrieval. Cambridge University Press,
2008.

Monath, N., Kobren, A., Krishnamurthy, A., Glass, M. R.,
and McCallum, A. Scalable hierarchical clustering with
tree grafting. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, pp. 1438–1448. Association for Computing
Machinery, 2019.

Moseley, B. and Wang, J. Approximation bounds for hier-
archical clustering: Average linkage, bisecting k-means,
and local search. In Advances in Neural Information
Processing Systems, volume 30, pp. 30943103. Curran
Associates, Inc., 2017.

Naumov, S., Yaroslavtsev, G., and Avdiukhin, D. Objective-
based hierarchical clustering of deep embedding vectors.
In Proc. AAAI, 2020.

Nguyen, T., Schmidt, B., and Kwoh, C. K. Sparsehc: A
memory-efficient online hierarchical clustering algorithm.
In Abramson, D., Lees, M., Krzhizhanovskaya, V. V.,
Dongarra, J. J., and Sloot, P. M. A. (eds.), Proceedings of
the International Conference on Computational Science,
ICCS 2014, volume 29 of Procedia Computer Science,
pp. 8–19. Elsevier, 2014.

Rodrigues, P. P., Gama, J., and Pedroso, J. P. ODAC: hierar-
chical clustering of time series data streams. In Ghosh, J.,
Lambert, D., Skillicorn, D. B., and Srivastava, J. (eds.),
Proceedings of the Sixth SIAM International Conference
on Data Mining, pp. 499–503. SIAM, 2006.

Schmidt, M. and Sohler, C. Fully dynamic hierar-
chical diameter k-clustering and k-center. CoRR,
abs/1908.02645, 2019. URL http://arxiv.org/
abs/1908.02645.

Vainstein, D., Chatziafratis, V., Citovsky, G., Rajagopalan,
A., Mahdian, M., and Azar, Y. Hierarchical clustering via
sketches and hierarchical correlation clustering. CoRR,
abs/2101.10639, 2021.

Wang, D. and Wang, Y. An improved cost function for hier-
archical cluster trees. In ArXiv, abs/1812.02715, 2018.

https://doi.org/10.1137/070699007
https://doi.org/10.1137/070699007
https://doi.org/10.1137/070698257
https://doi.org/10.1137/070698257
http://arxiv.org/abs/1908.02645
http://arxiv.org/abs/1908.02645

HC in the Dynamic Setting

Wang, Y. and Moseley, B. An objective for hierarchical clus-
tering in euclidean space and its connection to bisecting
k-means. In Proc. AAAI, pp. 6307–6314, 2020.

Zhang, T., Ramakrishnan, R., and Livny, M. Birch: An
efficient data clustering method for very large databases.
In SIGMOD, volume 25(2), pp. 103–114, 1996.

HC in the Dynamic Setting

A. Supplementary material for Section 3
The pseudocode for Insµ is presented in Algorithm 1. For all algorithms, we use the notation T ∧ T ′ to denote the tree with
T (resp. T ′) as its left (resp. right) sub-tree, and Node(x) to denote a node containing point x.

Algorithm 1 Insert operation Insµ for the general dynamic algorithm of Section 3

Input . Tree T (X) on points X = {x1, x2, . . . , xn} ⊆ Rd, and new point xn+1

Output . Tree T (X ∪ {xn+1}) on X ∪ {xn+1}

• /* If the new point is the first one added to T, create the root of T and return */

If X = ∅ then return Node(xn+1);

• /* Draw a hyperplane H from distribution µX∪{xn+1} */

Draw H := {x ∈ Rd : w · x = b, ‖w‖ = 1} ∼ µX∪{xn+1};

• /* If H separates X and xn+1, add xn+1 and return */

If ∀i ≤ n sgn(w · xi − b) 6= sgn(w · xn+1 − b) then return T (X) ∧ Node(xn+1);

/* Else let H ′ be the hyperplane previously generated in T to split X into the two

subsets X+ and X− of X */

Else H ′ ← hyperplane {x ∈ Rd : w′ · x = b′, ‖w′‖ = 1} cutting T (X);

X− ← {x ∈ X : w′ · x− b′ ≤ 0};
X+ ← {X ∈ X : w′ · x− b′ > 0};

• /* Recurs on the subset obtained by cutting X with H ′ where all points are on the same

side w.r.t xn+1 */

If w′ · xn+1 − b′ ≤ 0 then return Insµ(T (X−), xn+1) ∧ T (X+);

Else return T (X−) ∧ Insµ(T (X+), xn+1);

We restate an observation made in Section 3 regarding the restriction of hyperplane measures.

Lemma A.1 (Restriction invariance property). Fix a hyperplane distribution µ and consider two finite sets X,Y ⊂ Rd with
X ⊂ Y . Recall from Section 3 the notation µX to mean the probability measure on hyperplanes intersecting Conv(X).
Then (µY)|X = µX , where (µY)|X is the restriction of µY to hyperplanes intersecting Conv(X). In words, a hyperplane
chosen from µY conditioned on intersecting Conv(X) is equal in distribution to a hyperplane chosen from µX .

Proof. This follows immediately from the definitions of µY and µX , and the fact that the hyperplanes intersecting Conv(X)
are a subset of those intersecting Conv(Y).

Theorem 3.1. Let µ be a nonnegative measure on Graffd−1(Rd) which is finite on compact sets, and suppose there is an
efficient way to sample from µX for all finite sets X . Then, there is an efficient insertion operation Insµ such that Aµ has
the sequential property w.r.t. Insµ.

Proof. We wish to show that, for all finite X ⊂ Rd, and x ∈ Rd, we have Insµ(Aµ(X), x)
d
= Aµ(X ∪ {x}), where d

=
denotes equality in distribution, and Aµ is the recursive algorithm defined in Section 3. We prove the claim by induction on
the size ofX . For |X| = 1, both Insµ(∅, x) andAµ(x) return a singleton node with point x. By the induction hypothesis, we
will assume that the claim is true for all sets X with |X| ≤ k − 1, and consider |X| = k. Let T ′(X,x) = Insµ(Aµ(X), x)
and T (X ∪ {x}) = Aµ(X ∪ {x}). We first show that the root cuts H of T and H ′ of T ′ are equal in distribution. By
Algorithm 1, H ′ is chosen from µX∪{x} if H ′ separates X from x. Otherwise, H ′ is left as the root cut of Aµ(X) which is

distributed as µX . However, by Lemma A.1, µX∪{x}|X = µX . Thus H ′ d= H . In the event that H ′ and H split X from x,

the subtree of T ′ containing X is distributed as T (X) and hence T ′ d= T . Now consider the event that H ′ does not split X
from x, and that (without loss of generality) x is inserted into the subtree X ′ of X , with X ′′ unchanged. In this case, by
Algorithm 1, T ′(X ′ ∪ {x}) = Insµ(Aµ(X ′), x) and by the induction hypothesis, the latter is distributed as Aµ(X ′ ∪ {x}).

Since X ′′ is untouched, we also have T ′(X ′′) d
= T (X ′′). Putting the above cases together completes the proof.

HC in the Dynamic Setting

B. Supplementary material for Section 4
B.1. Proofs of Fact 4.1 and Lemmas 4.3, 4.7, and 4.8

Fact 4.1. Fix dimension d, and let Hi,v = {x ∈ Rd |xi = v}, where xi is the i-th component of vector x. Let
then H = {Hi,v | i ∈ [d], v ∈ R} be the set of axis-parallel hyperplanes. For H′ ⊂ H, define µRCT by µRCT(H′) =∑d
i=1 µL({v ∈ R |Hi,v ∈ H′}), where L is the standard Lebesgue measure on R. Then AµRCT

(resp. InsµRCT
) is the offline

(resp. dynamic) RCT algorithm.

Proof. We recall the definition of an RCT (batch algorithm) from (Guha et al., 2016):

Definition B.1 (Batch RCT Algorithm). A random cut tree (RCT) T (X) on item set X ⊆ Rd is a tree-valued random
variable generated as follows:

1. Draw random index I ∈ [d] with probability P[I = i] = li∑d
i=1 li

, where

li = max
x∈X

(x)i −min
x∈X

(x)i ,

with (x)i denoting the i-th component of vector x. Hence the above probability is proportional to the side lengths of
the (axis-parallel minimum) bounding box of X;

2. Draw threshold θ ∼ Uniform[minx∈X xI ,maxx∈X xI];

3. Let X1 = {x |x ∈ X, (x)I ≤ θ} and X2 = X\X1 correspond to the left and right subtrees of the root of T (X), and
recurse on X1 and X2, until T (X) is a (singleton) leaf.

Comparing this definition with the definition of Aµ given in Section 3, we see that we need to show that sampling a
hyperplane H from µRCT is equivalent to the sampling done in steps 1 and 2 above. Note that µRCT is supported on the
axis-parallel hyperplanes. Given a finite set X ⊂ Rd, let its bounding box be

∏d
i=1[(xl)i, (x

h)i], and set li = (xh)i − (xl)i.
The set of axis-parallel hyperplanes that intersect Conv(X) is H′(X) =

⋃d
i=1{Hi,v | v ∈ [(xl)i, (x

h)i]]. By definition,
µRCT assigns a measure of

∑d
i=1 li toH′(X). Hence the µRCT,X -probability of selecting a hyperplane parallel to dimension

j is precisely lj/
∑d
i=1 li as done in step 1. Furthermore, since µRCT assigns Lebesgue measure to the hyperplanes in a given

axis, sampling within a dimesion j is uniform, as is done in step 2. This concludes the proof.

We state and prove the generalization of Lemma 4.3 for all algorithms Aµ.

Lemma B.2. Let Aµ be any algorithm in the family of hyperplane-based HC algorithms, X ⊂ Rd be any finite set of items,
and denote by T (X) the output of Aµ on input X . Then for any R ⊆ X , the restriction of T (X) to subset R has the same
distribution as T (R).

Notice that since by Fact 4.1 RCT is one such Aµ, this directly implies Lemma 4.3 in the main body of the paper.

Proof of Lemma B.2. Consider Aµ applied to X . Let HP ∼ µP be the first cut that separates R, where P is the set of points
in the region cut out by hyperplanes and containing R at the time R is separated. By Lemma A.1, µP |R = µR. Thus HP

has the same distribution of the first cut of T (R). Let P+ and P− denote the partition of P induced by HP , and let R+ and
R− denote the corresponding partition of R. Continuing recursively on the pairs (P+, R+) and (P−, R−) completes the
proof.

Lemma 4.7. Given inputX and a cutHX sampled from µX , the probability pi,j that xi and xj are split byH is proportional
to their `1 distance di,j .

Proof. Let B(X) =
∏d
k=1[(xl)k, (x

h)k] be the bounding box of X . For k ∈ [d], we let lk = (xh)k − (xl)k denote the
dimensional lengths of B(X). As in the proof of Fact 4.1, the measure of axis-parallel hyperplanes that intersect B(X) is
given by

∑d
k=1 lk, the `1 diameter of B(X). Similarly, the measure of hyperplanes that separate xi and xj is given by the

`1 diameter of their bounding box. However, the latter is simply their `1 distance di,j . Thus the probability that xi and xj
are separated is given by pi,j =

di,j∑d
k=1 lk

.

HC in the Dynamic Setting

Algorithm 2 Insert operation InsµRCT
for RCT from (Guha et al., 2016).

Input . Tree T (X) on points X = {x1, x2, . . . , xn} ⊆ Rd, and new point xn+1

Output . Tree T (X ∪ {xn+1}) on items X ∪ {xn+1}

• /* If the new point is the first one added to T, create the root of T and return */

If X = ∅ then return Node(xn+1);

• /* Draw an axis-parallel hyperplane H that intersects the bounding box of X */

Let B(X) =
∏d
i=1[(xl)i, (x

h)i] be the bounding box of X;

For i ∈ [d], let (x̂l)i = min{(xn+1)i, (x
l)i}, (x̂h)i = max{(xn+1)i, (x

h)i}, and li = (x̂h)i − (x̂l)i;

Choose a dimension j ∈ [d] with probability pj = lj/
∑
i∈[d] li and choose a random number v in [(xl)i, (x

h)i);

Define H as the hyper-plane {x ∈ Rd|xj = v} where xj denotes the jth coordinate of x;

• /* If H separates X and xn+1, add xn+1 and return */

If ∀i ≤ n sgn((xi)j − v) 6= sgn((xn+1)j − v) then return T (X) ∧ Node(xn+1);

/* Else let H ′ be the hyperplane previously generated in T to split X into the two

subsets X+ and X− of X */

Else H ′ ← hyperplane {x ∈ Rd : xj′ = v′} cutting T (X);
X− ← {x ∈ X : xj′ ≤ v′};
X+ ← {x ∈ X : xj′ > v′};

• /* Recurs on the subset obtained by cutting X with H ′ where all points are on the same

side w.r.t xn+1 */

If (xn+1)j′ ≤ v′ then return InsµRCT
(T (X−), xn+1) ∧ T (X+);

Else return T (X−) ∧ InsµRCT
(T (X+), xn+1);

The following lemma relates probabilities of separating a pair of points to probabilities of separating a triplet of points.

Lemma B.3. Fix a hyperplane measure µ satisfying that for all x ∈ Rd, µ({H 3 x}) = 0. Let t = {xi, xj , xk} and let H
be a hyperplane chosen from µt. Let Ea (resp., Eb, Ec) be the event that H separates xi and xj (resp. xj and xk, xi and
xk). Then the probability that H separates xi and xj from xk is given by

pi,j|k =
P(Eb) + P(Ec)− P(Ea)

P(Ea) + P(Eb) + P(Ec)
,

and similarly for pi,k|j and pj,k|i.

Proof. Since H will cut two sides of the triangle defined by t, the events Ea, Eb, and Ec, are not disjoint, On the other hand,
the events Ea ∩ Eb, Ea ∩ Ec, and Eb ∩ Ec are disjoint8 and collectively exhaustive. In fact, we have

P(Ea) = P(Ea ∩ Eb) + P(Ea ∩ Ec),
P(Eb) = P(Ea ∩ Eb) + P(Eb ∩ Ec),

and P(Ec) = P(Ea ∩ Ec) + P(Eb ∩ Ec),

which we can invert to get

pi,j|k = P(Eb ∩ Ec) =
P(Eb) + P(Ec)− P(Ea)

2
.

Since P(Ea) + P(Eb) + P(Ec) = 2(P(Ea ∩ Eb) + P(Ea ∩ Ec) + P(Eb ∩ Ec)) = 2, we may rewrite the above as

pi,j|k =
P(Eb) + P(Ec)− P(Ea)

P(Ea) + P(Eb) + P(Ec)
.

as claimed. By symmetry, we have the analogous expressions for pi,k|j and pj,k|i.
8We ignore the measure zero event that H contains one of the vertices

HC in the Dynamic Setting

Lemma 4.8. Fix a triplet {xi, xj , xk} of X . Then the probability, pi,j|k, that RCT T (X) separates xi and xj from xk is
given by

pi,j|k =
di,k + dj,k − di,j
di,j + di,k + dj,k

,

and similarly for pi,k|j and pj,k|i.

Proof. Let Ea be the event that the first cut of RCT that splits the triplet separates xi from xj (and similarly define Eb
and Ec). From Lemma B.3, we have pi,j|k = (P(Eb) + P(Ec)− P(Ea))/(P(Ea) + P(Eb) + P(Ec)). On the other hand,
by Lemma 4.7, we have P(Ea) = λdi,j , P(Eb) = λdj,k, and P(Ec) = λdi,k, where the di,j’s are `1 distances, and λ is
independent of i, j, k. Substituting these expressions above, we arrive at

pi,j|k =
di,k + dj,k − di,j
di,j + di,k + dj,k

,

and similarly for pi,k|j and pj,k|i.

B.2. Proof of Theorem 4.6

A common ingredient for all four objectives is their triplet-wise decomposition, i.e., Obj(T) =
∑
i<j<k fi,j,k(T), where

f(i, j, k) is given by the following formulae:

1. MW Revenue:

fi,j,k =


wi,j if ij|k
wi,k if ik|j
wj,k if jk|i .

2. MW Cost:

fi,j,k =


di,j if ij|k
di,k if ik|j
dj,k if jk|i .

3. Dasgupta Cost:

fi,j,k = (2/(n− 2))(wi,j + wi,k + wj,k) +


wi,k + wj,k if ij|k
wi,j + wj,k if ik|j
wi,j + wi,k if jk|i .

4. CKMM Revenue:

fi,j,k = (2/(n− 2))(di,j + di,k + dj,k) +


di,k + dj,k if ij|k
di,j + dj,k if ik|j
di,j + di,k if jk|i .

In the latter two cases, define the modified triplet term

gi,j,k =


ρi,k + ρj,k if ij|k
ρi,j + ρj,k if ik|j
ρi,j + ρi,k if jk|i,

with ρ = w for the Dasgupta cost and ρ = d for the CKMM Revenue.

Lemma B.4. It suffices to use gi,j,k in the proofs of the Dasgupta Cost and CKMM Revenue guarantees.

HC in the Dynamic Setting

Proof. Note that
∑
i<j<k fi,j,k =

∑
i<j<k gi,j,k + 2

∑
i<j wi,j (since, e.g., the term (2/(n− 2))wi,j appears n− 2 times

in the sum over triplets). Now suppose we have the guarantee
∑
i<j<k gi,j,k(TRCT) ≥ α

∑
i<j<k gi,j,k(TOpt), where TOpt

is the optimal tree under CKMM Revenue and α ≤ 1. Then∑
i<j<k

fi,j,k(TRCT) =
∑
i<j<k

gi,j,k + 2
∑
i<j

wi,j

≥ α

 ∑
i<j<k

gi,j,k(TOpt)

+ α

2
∑
i<j

wi,j


= α(

∑
i<j<k

fi,j,k(TOpt)).

A similar calculation in the case of Dasgupta cost (with α ≥ 1 and the inequalities reversed) yields the claim.

In the following, for triplet {xi, xj , xk}, we will use Revi,j,k(T) to denote the MW Revenue triplet term and CKMM
Revenue modified triplet term for a tree T , and denote by Ci,j,k(T) the modified Dasgupta Cost triplet term and MW
Cost triplet term. When T is the optimal tree under one of these measures, we will use the notation Revi,j,k(OPT), resp.
Ci,j,k(OPT). We also use the notation Bi,j,k = (di,j + di,k + dj,k)/2 which is also the `1 diameter of the bounding box of
triplet {xi, xj , xk}.

B.2.1. CASE 1: MW REVENUE + L1-SIMILARITY

In this case wi,j = D − di,j , ∀i 6= j, where D = maxi,j di,j and di,j is the `1-distance. We prove the following result.

Theorem B.5. For X ⊆ Rd endowed with `1 similarity and satisfying Assumption 4.4, we have ERevS(RCT(X)) ≥
(
√

3− 1)OptRevS
, where the expectation is over the internal randomization of RCT.

We will need the following inequality.

Lemma B.6. Let x, y, z be nonnegative real numbers. Then

x2 + y2 + z2 ≥ (
√

3− 1)(x+ y + z) max(x, y, z).

Proof. Without loss of generality, assume z = max(x, y, z) = 1. We then need to minimize f(x, y) = 1+x2+y2

1+x+y for

0 ≤ x, y ≤ 1. Letting u = x + y, we can rewrite f as 1+x2+(u−x)2
1+u . For fixed u, this is minimized at x = u/2. Thus it

suffices to minimize f when x = y. Letting g(x) = f(x, x) = 1+2x2

1+2x , and setting g′(x) = 0 shows that g is minimized at

x =
√
3−1
2 where it achieves a value of

√
3− 1.

Proof of Theorem B.5. We first prove a triplet-wise bound. Fix a triplet {xi, xj , xk}, define Bi,j,k = (di,j + dj,k + di,k)/2,
and define ∆i,j,k = D −Bi,j,k. Then wi,j = Bi,j,k − di,j + ∆i,j,k, etc., and

Revi,j,k(OPT) = max(Bi,j,k − di,j , Bi,j,k − di,k, Bi,j,k − dj,k) + ∆i,j,k.

To calculate ERevi,j,k(RCT), using Lemma 4.8 we have

ERevi,j,k(RCT) =
∑
cyc

pi,j|kwi,j

=
∑
cyc

Bi,j,k − di,j
Bi,j,k

(Bi,j,k − di,j + ∆i,j,k)

=
1

Bi,j,k

∑
cyc

(Bi,j,k − di,j)2 + ∆i,j,k,

where we recall the cyclic sum notation
∑

cyc f(i, j, k) = f(i, j, k) + f(j, k, i) + f(k, i, j).

HC in the Dynamic Setting

Let x = Bi,j,k − dj,k, y = Bi,j,k − di,k, and z = Bi,j,k − di,j and note that Bi,j,k = x + y + z (since
∑

cyc pi,j|k = 1).
Then by Lemma B.6, we have

ERevi,j,k(RCT) =
x2 + y2 + z2

x+ y + z
+ ∆i,j,k

≥ (
√

3− 1)(max(x, y, z) + ∆i,j,k) + (2−
√

3)∆i,j,k

= (
√

3− 1)Revi,j,k(OPT) + (2−
√

3)∆i,j,k .

Summing over triplets and using our assumption that
(
n
3

)−1∑
i<j<k ∆i,j,k ≥ 0 yields the desired bound.

B.2.2. CASE 2: DASGUPTA COST + L1-SIMILARITY

Theorem B.7. For X ⊆ Rd with endowed with `1 similarity and satisfying Assumption 4.4, we have ECostS(RCT(X)) ≤
2OptCostS , where the expectation is over the internal randomization of RCT.

In this case wi,j = D − di,j , ∀i 6= j, where D = maxi,j di,j and di,j is the `1-distance. Consider the modified triplet term
from Lemma B.4,

Ci,j,k(T) =


wi,k + wj,k if ij|k
wi,j + wj,k if ik|j
wi,j + wi,k if jk|i .

We will show that under Assumption 4.4, RCT achieves a 2-approximation of CostS . The proof is similar to that of Theorem
B.5. Fix a triplet {xi, xj , xk}, let a = di,j , b = di,k, c = dj,k, and assume without loss of generality that c ≤ b ≤ a. Then
Ci,j,k(OPT) ≥ 2D − (a+ b) = c+ 2(D −Bi,j,k) (recall that Bi,j,k = (a+ b+ c)/2). On the other hand,

Ci,j,k(RCT) =
∑
cyc

b+ c− a
a+ b+ c

(2D − (b+ c))

= 2(D −Bi,j,k) +
∑
cyc

b+ c− a
a+ b+ c

(2Bi,j,k − (b+ c))

= 2(D −Bi,j,k) +
∑
cyc

a(b+ c− a)

a+ b+ c

= 2(D −Bi,j,k) +
2(ab+ ac+ bc)− (a2 + b2 + c2)

a+ b+ c

= 2(D −Bi,j,k) +
2c(a+ b)− c2 − (a− b)2

a+ b+ c

≤ 2(c+D −Bi,j,k)

= 2Ci,j,k(OPT)− 2(D −Bi,j,k) .

The result follows by summing over triplets, and using
(
n
3

)−1∑
i<j<k Bi,j,k ≤ D.

Remark B.8. The example (a, b, c) = (n, n, 1) with n large shows that RANDOM can perform arbitrarily poorly for this
objective. Indeed, with D = (a + b + c)/2 = n + 1/2, the weights are (1/2, 1/2, n − 1/2). CostS(OPT) = 1 while
CostS(RANDOM) = 2

3 (1/2 + 1/2 + (n− 1/2)) = (2n+ 1)/3.

B.2.3. CASE 3: CKMM REVENUE + L1-DISTANCE

Theorem B.9. For X ⊆ Rd endowed with the `1 metric, we have ERevD(RCT(X)) ≥ (2
√

6 − 4)OptRevD
, where the

expectation is over the internal randomization of RCT.

For this and the following dissimilarity objective, we use the distances themselves for dissimilarities, and we will not require
any assumptions. Reusing notation from the previous subsection, we assume 1 = c ≤ b ≤ a. Using the modified triplet

HC in the Dynamic Setting

term from Lemma B.4, we have Revi,j,k(OPT) = a+ b, while

Revi,j,k(RCT) =
∑
cyc

b+ c− a
a+ b+ c

(b+ c)

=
2(a2 + b2 + c2)

a+ b+ c

=
2(a2 + b2 + 1)

a+ b+ 1
.

Following the approach in the proof of Lemma B.6, we set f(a, b) = 2(a2+b2+1)
(a+b+1)(a+b) and seek to minimize f for a, b ≥ 1. For

fixed u = a+ b we note that f is minimized at a = u/2 = b. Now setting g(a) = f(a, a) = 2a2+1
2a2+a , we find after a routine

calculation that g is minimized at a = 1 +
√

6/2 where it achieves a value of 2
√

6− 4 ≈ 0.90.

Remark B.10. In this case, RANDOM achieves an approximation of 2/3, which should be thought of as the baseline.

B.2.4. CASE 4: MW COST + L1-DISTANCE

Theorem B.11. ForX ⊆ Rd endowed with the `1 metric, we have ECostD(RCT(X)) ≤ 2OptCostD , where the expectation
is over the internal randomization of RCT.

Following the same notation as before and assuming c = min(a, b, c) = 1, in this case we have Ci,j,k(OPT) ≥ c, while
Ci,j,k(RCT) =

∑
cyc

b+c−a
a+b+c · a. This expression is identical to that in the calculation for the Dasgupta cost and we recover

the bound Ci,j,k(RCT) ≤ 2c. Summing over the triplets yields a 2-approximation result here as well. The example
(a, b, c) = (n, n, 1) with n large shows that RANDOM performs arbitrarily poorly for this objective as well.

B.2.5. CASES 5 AND 6: INVERSE L1 DISTANCE

We extend the approximation results for the similarity-based objectives (MW Revenue and Dasgupta Cost) to the case where
weights are defined by wi,j = 1/di,j . We reuse the notation a = di,j , etc. and assume 1 = c ≤ b ≤ a.

Theorem B.12. For X ⊆ Rd with wi,j = 1/||xi − xj ||1, we have ECostS(RCT(X)) ≤ (3/2)OptCostS , where the
expectation is over the internal randomization of RCT.

Ci,j,k(RCT) =
∑
cyc

b+ c− a
a+ b+ c

(
1

b
+

1

c

)
=

6

a+ b+ c

≤ 3

2

(
1

a
+

1

b

)
≤ 3

2
Ci,j,k(OPT) .

Theorem B.13. For X ⊆ Rd with wi,j = 1/||xi − xj ||1, we have ERevS(RCT(X)) ≥ (4
√

6 − 9)OptRevS
, where the

expectation is over the internal randomization of RCT.

We have Revi,j,k(OPT) ≤ 1/c = 1 and Revi,j,k(RCT) =
∑

cyc
b+c−a
a+b+c ·

1
a . A more involved computation, but similar to the

approach of Lemma B.6 shows that Revi,j,k(RCT) is minimized when a = b. It is then straightforward to show that this
occurs at a = 1 +

√
6/2 where Revi,j,k(RCT) achieves a value of 4

√
6− 9 ≈ 0.80.

B.2.6. CASE 7: MW REVENUE + ABSOLUTE EXPONENTIAL KERNEL

We extend the MW Revenue approximation result to the case when the weights are given by an absolute exponential kernel,
namely, wi,j = e−di,j/λ, with length scale λ > 0. In order to obtain better than random results, we assume that there exists
a δ such that wi,j ≥ δ for all pairs i and j. We note that the same assumption is made in (Charikar et al., 2019b).

HC in the Dynamic Setting

Theorem B.14. For X ⊆ Rd with wi,j = e−di,j/λ and wi,j ≥ δ for all pairs i and j, we have ERevS(RCT(X)) ≥
f(δ)OptRevS

, where the expectation is over the internal randomization of RCT and f(δ) is the green curve labeled “Abs.
Exp. Kernel” in Figure 2.

Fixing δ, we let d∗ = λ ln(1/δ) be the distance that achieves wi,j = δ. Using the notation c ≤ b ≤ a for distances, we have
Revi,j,k(OPT) ≤ e−c/λ while

Revi,j,k(RCT) = ((a+ b− c)e−c/λ + (a+ c− b)e−b/λ + (b+ c− a)e−a/λ)/(a+ b+ c) .

We wish to minimize the ratio f(a, b, c) := Revi,j,k(RCT)/Revi,j,k(OPT) over 0 ≤ c ≤ b ≤ a ≤ b + c. We show
analytically that the minimum is achieved for a = b = d∗. The final minimization over c, however, is not analytically
tractable and is performed numerically.

Fixing both c and u = a+ b, we minimize

g(a;u, c) = (u− 2a+ c)e(c−a)/λ + (2a− u+ c)e(c−u+a)/λ + (u− c) .

Since g(a) = g(u− a), d
dag(a) = 0 for a = u/2. We have

d

da
g(a) = ((u− 2a+ c)(−1/λ)− 2)e(c−a)/λ + ((2a− u+ c)(1/λ) + 2)e(c−u+a)/λ

=

(
2a− u
λ

)
(e(c−u+a)/λ + e(c−a)/λ) +

(
2 +

c

λ

)
(e(c−u+a)/λ − e(c−a)/λ) .

Since the last expression is positive for a > u/2 and negative for a < u/2, a = u/2 is the global minimum of g(a). Thus
f(a, b, c) is minimized for a = b. Incorporating the observation that jointly scaling up the variables decreases the ratio gives
us the claim that it is minimized at a = b = d∗.

We now turn to the task of minimizing over c. For fixed δ, the minimum is independent over λ as can be seen from the
scaling a′ = a/λ, etc. We thus set λ = 1 and minimize (2cec−a + (2a− c))/(c+ 2a), where a = ln(1/δ) and c ≤ a. The
results are shown in Figure 2 as a function of δ, along with the comparison with the approximation ratio of (1 + 2δ)/3
achieved by RANDOM . Note that RCT significantly improves upon RANDOM for δ bounded away from 0 and 1.

B.2.7. CASE 8: MW REVENUE + GAUSSIAN KERNEL

We extend the MW Revenue approximation result to the case when the weights are given by a Gaussian kernel, namely
wi,j = e−d

2
i,j/2σ

2

for length scale σ > 0. As in the previous result, we assume that wi,j ≥ δ for all pairs i and j, following
(Charikar et al., 2019a).

Theorem B.15. For X ⊆ Rd with wi,j = e−d
2
i,j/2σ

2

and wi,j ≥ δ for all pairs i and j, we have ERevS(RCT(X)) ≥
f(δ)OptRevS

, where the expectation is over the internal randomization of RCT and f(δ) is the yellow curve labeled
“Gaussian Kernel” in Figure 2.

We seek to minimize the approximation ratio given by the function

f(a, b, c) = ((b+ c− a)e(c
2−a2)/2σ2

+ (a+ c− b)e(c
2−b2)/2σ2

+ (a+ b− c))/(a+ b+ c)

over 0 ≤ c ≤ b ≤ a ≤ b+ c. Letting d∗ be such that e−d
∗2/2σ2

= δ, we first show that f is minimized when a = b = d∗.
As before, we note that scaling up the variables only decreases f . Fixing c and u = a+ b, we minimize

g(a;u, c) = (u− 2a+ c)e(c
2−a2)/2σ2

+ (2a− u+ c)e(c
2−(u−a)2)/2σ2

,

where we have omitted the last term and denominator of f which are constant. Since g(a) = g(u − a), d
dag(a) = 0 for

a = u/2. For a > u/2, we have

d

da
g(a) = ((u− 2a+ c)(−a/σ2)− 2)e(c

2−a2)/2σ2

+ ((2a− u+ c)(u− a)/σ2 + 2)e(c
2−(u−a)2)/2σ2

> e(c
2−a2)/2σ2

(1/σ2)(c(u− 2a) + (u− 2a)(−a) + (2a− u)(u− a))

= e(c
2−a2)/2σ2

(1/σ2)(2a− u)(u− c) > 0.

HC in the Dynamic Setting

For fixed δ, the minimum is independent over σ as can be seen from the scaling a′ = a/σ, etc. We thus set σ = 1 and
minimize (2ce(c

2−a2)/2 + (2a− c))/(c+ 2a), where a =
√

2 ln(1/δ). The results are shown in Figure 2, along with the
comparison with the approximation ratio of (1 + 2δ)/3 achieved by RANDOM. Note again that RCT significantly improves
upon RANDOM for δ bounded away from 0 and 1.

B.2.8. GENERALIZED THEOREM 4.6

We generalize Theorem 4.6 for a natural class of hyperplane measures µ that we define below and that includes µRCT and
µURRH. We first introduce some notation. For x, y ∈ Rd, we say that a hyperplane H = {z ∈ Rd | z · u = b} separates x
and y if sgn(x · u− b) 6= sgn(y · u− b). We also writeHxy = {H ∈ H |H separates x and y} for the set of hyperplanes
separating x and y.

Definition B.16. We say a hyperplane meaure µ on the manifold H of hyperplanes in Rd is admissible if it satisfies the
following:

(i) Non-negativity: For all (measurable)H′ ⊂ H, µ(H′) ≥ 0

(ii) Finite on compact sets: For all finite sets X , µ(HX) <∞, whereHX is the set of hyperplanes intersecting Conv(X).

(iii) Supported: µ(Hxy) > 0 for all x, y ∈ Rd, x 6= y.

(iv) Non-atomic: For all x ∈ Rd, µ({H ∈ H |x ∈ H}) = 0.

(i) and (ii) are repeated from Section 3. (iii) is needed below to establish the correspondence between such measures and
distance metrics. (iv) allows us to disregard edge cases of hyperplanes passing through a specific point as measure 0 events.
It is easy to see that both µRCT and µURRH as defined in Facts 4.1 and 5.1 respectively are admissible hyperplane measures.

Proposition B.17. Let µ be an admissible hyperplane measure. Define the function dµ : Rd × Rd → R≥0 by dµ(x, y) =
µ(Hxy). Then dµ is a distance metric.

Proof. Since Hxx = ∅, dµ(x, x) = 0. By property (iii) above, dµ(x, y) > 0 for x 6= y. By symmetry of the separation
relation, we haveHxy = Hyx so dµ(x, y) = dµ(y, x). To prove the triangle inequality, we claim that for any three points x,
y, and z,Hxz ⊆ Hxy ∪Hyz . Indeed, pick H ∈ Hxz so that H separates x and z. Suppose H /∈ Hxy, i.e., x and y are on
the same side of H . Then it follows that H separates y and z, so H ∈ Hyz . We then have

dµ(x, z) = µ(Hxz)
≤ µ(Hxy ∪Hyz)
≤ µ(Hxy) + µ(Hyz)
= dµ(x, y) + dµ(y, z) .

This concludes the proof.

We have thus established a correspondence between admissible hyperplane measures µ and their associated distance metrics
dµ. In this language, Lemma 4.7 can be restated as dµRCT

(x, y) = ||x − y||1. As we will see in Lemma C.1 of the next
section, dµURRH

(x, y) = λ||x− y||2, with λ an absolute constant depending only on the dimension. We generalize Lemma
4.8 below.

Lemma B.18. Let µ be an admissible hyperplane measure with associated distance metric d = dµ. Fix a triplet {xi, xj , xk}
of input X . Then the probability pi,j|k that Aµ on input X separates xi and xj from xk is given by

pi,j|k =
di,k + dj,k − di,j
di,j + di,k + dj,k

,

and similarly for pi,k|j and pj,k|i.

Proof. By Lemma B.2, we may assume X = {xi, xj , xk}. Let Ea (resp., Eb, Ec) be the event that H separates xi and xj
(resp. xj and xk, xi and xk). From Lemma B.3, we have pi,j|k = (P(Eb)+P(Ec)−P(Ea))/(P(Ea)+P(Eb)+P(Ec)). On

HC in the Dynamic Setting

the other hand, by definition of d = dµ we have P(Ea) = λdi,j , P(Eb) = λdj,k, and P(Ec) = λdi,k (where λ = 1/µ(HX)
andHX is the set of hyperplanes intersecting Conv(X)). Substituting these expressions above, we arrive at

pi,j|k =
di,k + dj,k − di,j
di,j + di,k + dj,k

,

and similarly for pi,k|j and pj,k|i.

We generalize Assumption 4.4 below.

Assumption B.19. For an arbitrary distance metric d, we say that a setX d-satisfies Assumption 4.4 if
(
n
3

)−1∑
i<j<k(di,j+

di,k + dj,k)/2 ≤ maxi,j di,j .

We are finally in a position to generalize Theorem 4.6.

Theorem B.20. Let µ be an admissible hyperplane measure with associated distance metric dµ. Then Aµ and Insµ satisfy
the same approximation guarantees as RCT given in Theorem 4.6, with dµ-based metrics instead of `1-based metrics, and
where the data dµ-satisfies Assumption 4.4 for the first two cases.

Proof. We note that all of the computations for Theorem 4.6 with RCT have rested only on the functional form of the
triangle cutting probabilities pi,j|k =

di,k+dj,k−di,j
di,j+di,k+dj,k

, etc., with the di,j’s being the `1 distances ||xi − xj ||1. Now, in the
case of Aµ, Lemma B.18 gives us the same formula with dµ replacing the `1 distance. Since we also generalize Assumption
4.4 in the first two cases, we obtain that Aµ achieves the same results of Theorem 4.6 for the case of dµ-based metrics.

B.3. Proofs of Theorems 4.10 and 4.11

The main tool we use is the following `1 embeddability result for `2 metrics (Ailon & Chazelle, 2009).

Theorem B.21. Let X ⊂ (Rd, `2) be a finite Euclidean metric on n points and fix distortion parameter ε > 0 and
failure probability δ > 0. Pick k = O(log(n/δ)/ε2) random vectors r1, . . . , rk on the unit sphere Sd−1 and set φ(v) =
(〈v, r1〉, . . . , 〈v, rk〉). Then with probability at least 1− δ, for all pairs of points u, v ∈ X ,

(1− ε) ≤ ||φ(u)− φ(v)||1
α||u− v||2

≤ (1 + ε),

where α is a constant. The result also holds when the components of the ri’s are iid standard normals.

To translate the `1 bounds for the `2 case, we need the following perturbation inequality.

Lemma B.22. Fix ε ∈ (0, 1). Let (a, b, c) and (a′, b′, c′) be non-negative triplets of real numbers satisfying the triangle
inequality and such that (1− ε)a ≤ a′ ≤ (1 + ε)a, and similarly for (b, b′) and (c, c′). Let p = a+b−c

a+b+c and p′ = a′+b′−c′
a′+b′+c′ .

Recall that these are the probabilities from Lemma 4.8 in the appendix. Then

p(1− ε)2 − ε ≤ p′ ≤ p(1 + ε)2 + ε .

Proof. We prove the lower bound on p′. The proof of the upper bound is analogous.

p′ ≥ a(1− ε) + b(1− ε)− c(1 + ε)

(a+ b+ c)(1 + ε)

=
(a+ b− c)(1− ε)− 2cε

(a+ b+ c)(1 + ε)

≥ (a+ b− c)(1− ε)
(a+ b+ c)(1 + ε)

− ε

≥ p(1− ε)2 − ε,

where we have used the triangle inequality to upper bound 2c/(a+ b+ c) by 1.

HC in the Dynamic Setting

Theorem 4.10. Fix ε, δ > 0. Consider a revenue case from Table 2 (cases 1, 3, 5, 7, 8) but with the corresponding `2 metric.
Let α be the corresponding approximation guarantee of RCT under `1 metric. Then there exists an absolute constant c such
that with probability 1− δ, PRCT with k = c log(n/δ)/ε2 achieves an expected approximation of α− ε in the `2 metric.

Proof. We first consider the MW Revenue objective. Theorem B.21 implies that, with probability at least 1− δ, for any pair
of points xi, xj , the following inequality holds:

(1− ε)d(xi, xj) ≤ d′(xi, xj) ≤ (1 + ε)d(xi, xj)

where d(·) is the `1-distance in the original space Rd, and d′(·) is the `2-distance in the projected space Rk. Using the
notion from Lemma B.22, we have

Revi,j,k(PRCT) =
∑
cyc

p′i,jwi,j

≥
∑
cyc

pi,j|k(1− ε)2wi,j − ε
∑
cyc

wi,j

≥ α(1− ε)2Revi,j,k(OPT)− 3εRevi,j,k(OPT)

≥ (α− 5ε)Revi,j,k(OPT),

where have used the lower bound of Lemma B.22 in the second line, and the bound
∑

cyc wi,j ≤ 3Revi,j,k(OPT) in
the third line. Replacing ε with ε/5 completes the proof. The CKMM revenue case follows from the analogous bound∑

cyc(di,j + di,k) ≤ 3 maxcyc(di,j + di,k).

Theorem 4.11. Fix ε, δ > 0. Consider a cost case from Table 2 (cases 2, 4, 6) but with the corresponding `2 metric. Let α
be the corresponding approximation guarantee of RCT under `1 metric and assume that the weights lie in the range [γ, 1]
for arbitrarily small but positive γ. Then there exists an absolute constant c such that with probability 1− δ, PRCT with
k = c log(n/δ)/ε2 achieves an expected approximation of α+ ε in the `2 metric.

Proof. We prove this in the case of the MW Cost; the case of Dasgupta Cost is similar. Recalling that we assume that the
weights are in [γ, 1], in the MW Cost case, we have the bound∑

i<j<k

(di,j + di,k + dj,k) ≤ A
∑
i<j<k

min(di,j , di,k, dj,k) ,

where A = 3/γ suffices. The proof is identical to that of Theorem 4.10, with the above inequality controlling the additive
perturbation introduced by Lemma B.22. In the Case of the Dasgupta cost, we instead have the bound wi,j +wi,k +wj,k ≤
Amin(wi,j + wi,k, wi,j + wj,k, wi,k + wj,k).

C. Supplementary material for Section 5
Algorithm 3 and Algorithm 4 contain the pseudocode of the URRH algorithm. Algorithm 5 contains the pseudocode of the
associated insertion procedure.

Notice that the sampling method used in Algorithm 4 is equivalent to selecting Hp,b(S(C)) without rejection as follows.
Once p is selected from the unit (d− 1)-sphere with probability proportional to maxx,x′∈C |x · p− x′ · p|, the offset b is
then drawn uniformly at random from the interval [x∗p · p, x′∗p · p], where the pair of points x∗p, x

′∗
p maximize |x · p− x′ · p|

over all x, x′ ∈ C. In fact this observation allows us to easily establish Fact 5.1.

Fact 5.1. Fix dimension d, let Hu,v = {x ∈ Rd |x · u = v}, and H = {Hu,v |u ∈ Sd−1, v ∈ R} be the set of all
hyperplanes in Rd. Define µURRH(H′) =

∫
u∈Sd−1 µL({v ∈ R |Hu,v ∈ H′}dν for H′ ⊂ H, where µL is the Lebesgue

measure on R and ν is the uniform measure on Sd−1. Then AµURRH
(resp. InsµURRH

) is the offline (resp. dynamic) URRH
algorithm.

Proof. As in the proof of Fact 4.1, it suffices to show that sampling a hyperplane H from µURRH is equivalent to the sampling
done in URRH. Fix a finite set X ⊂ Rd. For each u ∈ Sd−1 define v∗u = maxx∈X x · u and v′∗u = minx∈S x · u. The set

HC in the Dynamic Setting

of hyperplanes that intersect X is then given by H′(X) =
⋃
u∈Sd−1{Hu,v | v ∈ [v′∗u , v

∗
u]}. By definition, µURRH assigns

a measure of
∫
u∈Sd−1(v∗u − v′∗u)dν to H′(X). Hence the µURRHX

-probability of selecting a hyperplane with normal u is
proportional to v∗u − v′∗u , which is equivalent to the direction sampled by URRH. Furthermore, since µURRH assigns Lebesgue
measure to the hyperplanes with a given normal, µURRH samples the offset within [v′∗u , v

∗
u] uniformly, which is equivalent to

URRH’s sampling as well.

Algorithm 3 The URRH algorithm (Uniform Radial Random Hyperplane Algorithm).
Input . Set X = {x1, x2, . . . , xn} ⊆ Rd
Output . HC tree T
Init: Create root r of T ;
/* Start the recursive divisive splitting; The procedure URRH partition (Algorithm 4)

generates T and therefore has access to its nodes */

URRH partition(X, r);
Return T .

We now turn to establishing the approximation ratio guarantees for URRH as stated in Theorems 5.2 and 5.3. Key to both
theorems are the `2 analogs of Lemmas 4.7 and 4.8 which we now establish for URRH.
Lemma C.1. Let input X be contained in sphere S(X). Choose a cut H that intersects S(X) according to URRH. For
any two points x, y ∈ X , the probability pxy that H separates x and y is proportional to their `2 distance ||x− y||2 (and
is independent of their location and orientation). In addition, in the language of Section B.2.8, we have dµURRH

(x, y) =
λ||x− y||2.

Proof. Let S(X) have radius r. The measure that µURRH assigns to hyperplanes intersecting S(X) is given by 2r
∫
u∈Sd−1 dν,

where dν is the uniform measure on the unit sphere Sd−1. Let uxy = y−x
||x−y||2 be the unit vector from x to y, and let e1

denote the canonical unit vector in the first coordinate direction. The measure assigned to hyperplanes separating x and y is
given by

dµURRH
(x, y) =

∫
u∈Sd−1

|y · u− x · u| dν

=

∫
u∈Sd−1

|(y − x) · u| dν

=

∫
u∈Sd−1

||y − x||2|uxy · u| dν

= ||y − x||2
∫
u∈Sd−1

|e1 · u| dν,

where the last line follows from the rotational invariance of dν (more explicitly, we may make the substitution u← Ou,
where O is an orthonormal matrix that sends e1 to uxy). We thus have

pxy = ||x− y||2

∫
u∈Sd−1 |e1 · u|dν
2r
∫
u∈Sd−1 dν

,

which completes the proof.

Note in connection with Lemma C.5 that the proportionality constant in the above displayed equation is Θ
(

1
r
√
d

)
.

Given any triplet {xi, xj , xk} from the input set X , we denote by pi,j|k the probability that URRH separates xi and xj from
xk.
Lemma C.2. Given any triplet {xi, xj , xk} from the input set X , with a = di,j , b = dj,k, c = dk,i denoting their `2
distances, we have

pi,j|k =
b+ c− a
a+ b+ c

(and similarly for pi,k|j and pj,k|i).

HC in the Dynamic Setting

Algorithm 4 URRH partition(C, v)
Input . subset C = {xi1 , xi2 , . . . , xik} of k ≥ 1 items ; node v of T .

/* If the input subset is a singleton, then create a leaf with that point and return */

if k = 1 then

• Set v as a leaf of T ;

• Associate v with xi1 ;

• Return ;

/* Keep generating new random hyperplanes until the input subset is cut */

cut← False;
while cut =False do

• /* Select a random direction */

p← point selected uniformly at random from the unit (d− 1)-sphere;

• /* Use any chosen sphere containing the whole input */

S(C)← (d− 1)-sphere containing all input points in C;

• r ← radius of S(C);

• c← center of S(C);

• /* Select a random hyperplane with the chosen direction and intersecting S(C) */

b← real value selected uniformly at random from interval [c · p− r, c · p+ r];

• Hp,b(S(C))← {x ∈ Rd : x · p = b} ;

• /* If hyperplane Hp,b(S(C)) cuts set C then recurse on the two subsets of C split by

Hp,b(S(C)); otherwise reject Hp,b(S(C)) */

if ∃j′, j′′ ∈ [k] : sgn
(

(xij′ − c) · p
)
6= sgn

(
(xij′′ − c) · p

)
then

– /* Partition C according to the cutting hyperplane Hp,b(S(C)) into C′ and C′′ */

C ′ ← {xij ∈ C : (xij − c) · p ≥ 0}; C ′′ ← C \ C ′;
– /* Generate the children of input node v */

Create the left child v′ of v; Create the right child v′′ of v;
– /* Generate the children of input node v and recurse */

URRH partition(C ′, v′); URRH partition(C ′′, v′′);
– /* The input point subset is now partitioned; Return */

cut← True;

Proof. Let Ea be the event that the first cut of URRH that splits the triplet separates xi from xj (and similarly define Eb and
Ec). From Lemma B.3, we have pi,j|k = (P(Eb) + P(Ec)− P(Ea))/(P(Ea) + P(Eb) + P(Ec)). On the other hand, by
Lemma C.1, we have P(Ea) = λa, P(Eb) = λb, and P(Ec) = λc. Substituting these expressions above, we conclude that

pi,j|k =
b+ c− a
a+ b+ c

,

and by symmetry

pi,k|j =
a+ b− c
a+ b+ c

, pj,k|i =
a+ c− b
a+ b+ c

,

as claimed.

HC in the Dynamic Setting

Algorithm 5 Insert operation for InsµURRH
for URRH.

Input . Tree T (X) on points X = {x1, x2, . . . , xn} ⊆ Rd, and new point xn+1

Output . Tree T (X ∪ {xn+1}) on points X ∪ {xn+1}

• /* If the new point is the first one added to T, create the root of T and return */

If X = ∅ then return Node(xn+1);

• Y ← X ∪ {xn+1}

• /* Keep generating new random hyperplanes H until Y is cut */.
S(Y)← sphere enclosing Y .

• r ← radius of S(Y);

• c← center of S(Y);

cut← False;
while cut =False do

– /* Select a random direction */

p ← point selected uniformly at random from the unit (d − 1)-sphere; /* Select a random hyperplane

with the chosen direction and intersecting S(Y) */

b← real value selected uniformly at random from interval [c · p− r, c · p+ r];
– H ← {x ∈ Rd : x · p = b} ;
– /* If hyperplane H separate Y then use this; otherwise retry */;

if ∃j′, j′′ ∈ [n+ 1] : sgn
(

(xij′ − c) · p
)
6= sgn

(
(xij′′ − c) · p

)
then cut← True;

• /* If H separates X and xn+1, add xn+1 and return */

If ∀i ≤ n sgn(p · xi − b) 6= sgn(p · xn+1 − b) then return T (X) ∧ Node(xn+1);

/* Else let H ′ be the hyperplane previously generated in T to split X into the two

subsets X+ and X− of X */

Else H ′ ← hyperplane {x ∈ Rd : p′ · x = b′, ‖p′‖ = 1} cutting T (X);

X− ← {x ∈ X : p′ · x− b′ ≤ 0};
X+ ← {x ∈ X : p′ · x− b′ > 0};

• /* Recurs on the subset obtained by cutting X with H ′ where all points are on the same

side w.r.t xn+1 */

If p′ · xn+1 − b′ ≤ 0 then return InsµRCT
(T (X−), xn+1) ∧ T (X+);

Else return T (X−) ∧ InsµRCT
(T (X+), xn+1);

We now focus our attention on the proofs of Theorems 5.2 and 5.3.

Proof of Theorem 5.2. Recall the definition of µURRH from Fact 5.1. We use the notation µL for Lebesgue measure
on R and Hu,v = {x ∈ Rd |x · u = v}. It is easy to see that µURRH satisfies properties (i)-(iv) of Definition B.16
and hence is an admissible hyperplane measure. Indeed, (i) is immediate. For (ii), let X be a finite set and note
that µL({v ∈ R |Hu,v ∈ HX} is bounded over u ∈ Sd−1. (iii) follows from Lemma C.1, and (iv) follows from
µL({v ∈ R |Hu,v 3 x} = 0 for x ∈ Rd and u ∈ Sd−1. By Lemma C.1, dµURRH

(x, y) = λ||x− y||2. Finally, given the scale
invariance of the approximation guarantees with respect to the distance function, the proof of Theorem 5.2 follows from
Theorem B.20.

We then turn to the proof of Theorem 5.3. Without loss of generality, throughout the analysis we normalize distances so as
to get D = 1. This way our weights are now simply

wi,j := 1− di,j ,

HC in the Dynamic Setting

being di,j the normalized Euclidean distance between xi and xj . Clearly, this normalization does not affect the algorithm’s
approximation ratio.

Given any triplet {xi, xj , xk} of points in the input set X and any randomized algorithm ALG, we now define the expected
revenue of {xi, xj , xk} by

Revi,j,k(ALG) := pi,j|k(1− di,j) + pj,k|i(1− dj,k) + pk,i|j(1− dk,i) .

We also define a lower bound on ALG’s expected approximation ratio as

Apxi,j,k(ALG) :=
Revi,j,k(ALG)

max{1− di,j , 1− dj,k, 1− dk,i}
=

Revi,j,k(ALG)

1−min{di,j , dj,k, dk,i}
.

Also, let pi,j,k be the average length of the side of the triangle having xi, xj and xk as its vertices, i.e., pi,j,k =
1
3 (di,j + dj,k + dk,i). For simplicity, when the triplet {xi, xj , xk} is clear from the surrounding context, or when a
statement involving pi,j,k holds for any triplet, we shall abbreviate pi,j,k by p.

Finally, we define the piecewise function φ(p) : [0, 1]→ [0, 1] as follows (see Figure 3):

φ(p) := Jp = 0K +
q
0 < p < 8

9

y 2p+ 2
√

1− p− 2

p
+

q
8
9 ≤ p < 1

y 4− 3p

3p
+ Jp = 1K ,

where J·K denotes the indicator function of the predicate at argument.

Figure 3: Plot of φ as a function of p ∈ [0, 1]. Orange and blue solid lines, together with the red and green dots, represent the function
plot for p ∈ [0, 1]. Dashed lines plot the parts of function 2p+2

√
1−p−2
p

for p ≥ 8
9

, and function 4−3p
3p

for p < 8
9

, i.e., outside the intervals
they are associated with in the definition of φ(p).

We have the following lemma.

Lemma C.3. Given any triplet {xi, xj , xk} in the input set X , we have Apxi,j,k(URRH) ≥ φ(pi,j,k).

Proof. Let t be the triangle having xi, xj and xk as vertices, and denote by a, b and c the lengths of its sides, with a ≤ b ≤ c.
We first analyze the special cases pi,j,k = 0 and pi,j,k = 1, for which we must have a = b = c = 0 and a = b = c = 1,
respectively. These two cases are easily handled by observing that, more generally, when t is an equilateral triangle
(a = b = c), we have Revi,j,k(URRH) = 1−min(di,j , dj,k, dk,i), so that Apxi,j,k(URRH) = 1.

HC in the Dynamic Setting

In the case when pi,j,k 6= 1, by the definition of Apxi,j,k, we can combine Lemma C.2 with min {di,j , dj,k, dk,i} =
min {a, b, c} = a to obtain

Apxi,j,k(URRH) = (1− a)−1 ·
(
b+ c− a
a+ b+ c

· (1− a) +
a+ c− b
a+ b+ c

· (1− b) +
a+ b− c
a+ b+ c

· (1− c)
)

=
b+ c− a
a+ b+ c

+
a+ c− b
a+ b+ c

·
(

1− b
1− a

)
+
a+ b− c
a+ b+ c

·
(

1− c
1− a

)
. (2)

Our goal is now to minimize the above expression under the constraint that p = 1
3 (a+ b+ c), that is, we would like to

compute
f(p) := min

0≤a≤b≤c≤1:
06=a+b+c=3p 6=3

Apxi,j,k(URRH) . (3)

First of all, notice that for any triplet with 0 < a ≤ b ≤ c < 1, if we replace b and c by their arithmetic average b+c
2 , the

value of Apxi,j,k(URRH) decreases whenever b 6= c, while p does not change. Let t′ be another triangle having xi′ , xj′ and
xk′ as vertices, and denote by a′, b′ and c′ its three side lengths, with a′ ≤ b′ ≤ c′. Setting a′ = a, and b′ = c′ = b+c

2 , we
get pi,j,k = pi′,j′,k′ . On the other hand, in this case we also have

Apxi′,j′,k′(URRH)−Apxi,j,k(URRH)

=
b+c
2 + b+c

2 − a
a+ b+c

2 + b+c
2

+
a+ b+c

2 −
b+c
2

a+ b+c
2 + b+c

2

·
1− b+c

2

1− a
+
a+ b+c

2 −
b+c
2

a+ b+c
2 + b+c

2

·
1− b+c

2

1− a

−
(
b+ c− a
a+ b+ c

+
a+ c− b
a+ b+ c

·
(

1− b
1− a

)
+
a+ b− c
a+ b+ c

·
(

1− c
1− a

))
= − (1− b) (c− b+ a)

(1− a) (c+ b+ a)
− (1− c) (−c+ b+ a)

(1− a) (c+ b+ a)
+

2
(−c−b

2 + 1
) (

c+b
2 + −c−b

2 + a
)

(1− a) (c+ b+ a)

=
(c− b)2

(a− 1) (a+ b+ c)
,

which is always negative because we assumed a < 1 and a+ b+ c > 0, except for the case b = c in which case it is equal
to 0.

Hence we always have Apxi′,j′,k′(URRH) ≤ Apxi,j,k(URRH) while pi,j,k = pi′,j′,k′ , which implies that we can find the
minimizer f(p) assuming b = c. Replacing b by c in (2), Equation (3) becomes

f(p) = min
0≤a≤c≤1:

06=a+2c=3p 6=3

4ac− 2c− a2 − a
(a− 1) (2c+ a)

.

Replacing a by 3p− 2c in the above expression gives

f(p) = min
0<p≤c≤1:

p 6=1

4c2 − 8cp+ 3p2 + p

2cp− 3p2 + p
. (4)

Now we can easily minimize f(p) by setting the derivative

∂f

∂c
=

2
(
p (9p− 5) + c (4− 12p) + 4c2

)
(−3p+ 2c+ 1)

2
p

to 0, which finally gives c =
2
√

1− p+ 6p− 2

4
for 0 < p < 8

9 and c = 1 for 8
9 ≤ p < 1. Replacing back into (4) the two

values of c we just found, we see that f(p) is equal to 2p+2
√
1−p−2
p for 0 < p < 8

9 , and to 4−3p
3p for 8

9 ≤ p < 1, which gives
f(p) = φ(p) for all p ∈ (0, 1). Combining with the initial observation for the two extreme cases p = 0 and p = 1 concludes
the proof.

HC in the Dynamic Setting

Lemma C.4. Let Sd be the collection of all sets of n > d+ 1 points in the d-dimensional Euclidean space with unitary
maximum pairwise distance. Let C = {x1, . . . , xn} ∈ Sd be any such set. Then the average square distance(

n

2

)−1 ∑
1≤i<j≤n

‖xi − xj‖22

between pairs of points in C is upper bounded by
(

1 + 1
n−1

)(
1− 1

d+1

)
.

Proof. Without loss of generality, let the center of the circumsphere S(C) of the input points C be the origin 0 of Rd, and
let r be the radius of S(C). Let Conv(C) be the convex hull of C. Finally, denote by C̃ ⊆ C the subset of all points of C
belonging to the circumsphere S(C), i.e., all points x ∈ C such that ‖x‖ = r.

We must have 0 ∈ Conv(C̃), since if 0 6∈ Conv(C̃), then S(C) would not be the circumsphere of the points of C, for there
would exist a sphere S ′ 6= S(C) containing all points of C and having a radius strictly smaller than r.

Applying Carathodory’s theorem, which states that every x ∈ Conv(P) with P ⊂ Rd can be written as the convex
combination of at most d+1 points of P , we know that 0 =

∑n′

i=1 aiyi, for some y1, y2, . . . , yn′ ∈ C̃, and a1, a2, . . . , an′ ≥
0 with

∑n′

i=1 ai = 1, and n′ ≤ d+ 1.

Thus we have

0 =

∥∥∥∥∥∥
n′∑
i=1

aiyi

∥∥∥∥∥∥
2

=

 ∑
1≤i,j≤n′:i 6=j

ai aj(yi · yj)

+

 n′∑
k=1

a2k‖yk‖2
 . (5)

Let i∗, j∗ the two indices minimizing yi · yj over all pairs i, j ∈ {1, 2, . . . , n′} such that i 6= j. We can now write ∑
1≤i,j≤n′:i6=j

ai aj

 (yi∗ · yj∗) ≤
∑

1≤i,j≤n′:i6=j

ai aj(yi · yj)

= −
n′∑
k=1

a2k‖yk‖2 (6)

= −r2
n′∑
k=1

a2k , (7)

where we plugged the result of (5) into (6).

Applying the Cauchy-Schwartz inequality we have ∑
1≤i,j≤n′:i6=j

ai aj

2

≤

 ∑
1≤i,j≤n′:i6=j

a2i

 ∑
1≤i,j≤n′:i 6=j

a2j


=

(n′ − 1)

n′∑
i=1

a2i

(n′ − 1)

n′∑
j=1

a2j


= (n′ − 1)2

 n′∑
i=1

a2i

2

,

from which we obtain ∑n′

i=1 a
2
i∑

1≤i,j≤n′:i6=j ai aj
≥ 1

n′ − 1
. (8)

HC in the Dynamic Setting

Combining (7) with (8) gives

yi∗ · yj∗ ≤ −r2
∑n′

k=1 a
2
k∑

1≤i,j≤n′:i6=j ai aj
≤ −r2 1

n′ − 1
. (9)

We now use the assumption maxi,j ‖xi − xj‖ = 1 over all i, j ∈ {1, 2, . . . , n}, which implies that ‖yk − y`‖ ≤ 1 for all
k, ` ∈ {1, 2, . . . , n′}. Hence we can write

1 ≥ ‖yi∗ − yj∗‖2

= ‖yi∗‖2 + ‖yj∗‖2 − 2(yi∗ · yj∗)
= 2r2 − 2(yi∗ · yj∗)

≥ 2r2 + 2r2
1

n′ − 1
(10)

= r2
2n′

n′ − 1
,

where (10) follows from (9).

Using the above inequalities and recalling that n′ ≤ d+ 1 implies

r2 ≤ n′ − 1

2n′
≤ d

2(d+ 1)
.

We can now apply the above upper bound on r2 to bound from below the average square norm of xi over all i ∈ {1, 2, . . . , n}
as follows: ∑n

i=1 ‖xi‖2

n
≤ max

1≤i≤n
‖xi‖2 = r2 ≤ d

2(d+ 1)
. (11)

Finally, we conclude the proof by upper bounding the average square distance between any two points xi and xj as follows:(
n

2

)−1 ∑
1≤i<j≤n

‖xi − xj‖2 =

(
n

n− 1

)
·
∑n
i=1

∑n
j=1 ‖xi − xj‖2

n2

≤
(

n

n− 1

)
· 2

n

n∑
k=1

‖xk‖2

=

(
n

n− 1

)
· 2r2

≤
(

n

n− 1

)
· d

d+ 1
(12)

=

(
1 +

1

n− 1

)(
1− 1

d+ 1

)
,

where in (12) we used (11).

We restate here for convenience Theorem 5.3 from Section 5.

Theorem C.5. Given any input set X = {x1, . . . , xn} ⊆ Rd, with d > 3, the approximation ratio E[RevS(URRH(X))]
OptRevS

is

lower bounded by where g(d, n) is a function of d and n such that g(d, n) > 0 for all n > 605
116d ≈ 5.22d. In particular, if

n ≥
(

9 + 38
d−3.98

)
d and d > 3, we have

E[RevS(URRH(X))] ≥
(

1

3
+

1

31d3

)
OptRevS

.

In the above, the expectation is over the internal randomization of URRH.

HC in the Dynamic Setting

Proof. Let T = {{xi, xj , xk} : xi, xj , xk ∈ X, i < j < k} be the set of triplets on X . For any given triplet t =
{xi, xj , xk} ∈ T , let p(t) be equal to pi,j,k := 1

3 (‖xi − xj‖2 + ‖xj − xk‖2 + ‖xk − xi‖2), which denotes the average
side length of the triangle having xi, xj and xk as its vertices. Finally, let L(X) =

∑
t∈T p(t).

First of all, observe that averaging p(t) over all t ∈ T yields the average distance between any two items in X . This is
because (

n

3

)−1∑
t∈T

p(t) =
6

n(n− 1)(n− 2)

∑
1≤i<j<k≤n

1
3 (di,j + dj,k + dk,i) (13)

=
2

n(n− 1)(n− 2)

∑
1≤i<j≤n

di,j +
∑

1≤k≤n: k 6=i,j

(dj,k + dk,i)


=

2

n(n− 1)(n− 2)

∑
1≤i<j≤n

((n− 2)di,j)

=

(
n

2

)−1 ∑
1≤i<j≤n

di,j .

Let µ(d, n) :=

√(
1 + 1

n−1

)(
1− 1

d+1

)
. Applying now the Cauchy-Schwartz inequality to the bound of Lemma C.4, we

obtain L(X) ≤ µ(d, n)
(
n
3

)
for all d > 3. Let p∗ ∈ (µ(d, n), 1) a threshold value (that we will choose later to optimize the

URRH approximation factor) used to split T into two sets: The bad triplets Bp∗ = {t ∈ T : p(t) > p∗} and the good triplets
Gp∗ = {t ∈ T : p(t) ≤ p∗}. Define the following quantities:

• UB =
∑
t∈Bp∗

E[Rev(URRH(t))] ,

• UG =
∑
t∈Gp∗

E[Rev(URRH(t))] ,

• OB =
∑
t∈Bp∗

Rev(OPT(t)) ,

• OG =
∑
t∈Gp∗

Rev(OPT(t)) ,

where we denote by Rev(ALG(t)) the local revenue of any algorithm ALG on the given triplet t ∈ T .

Our goal is to minimize α = UB+UG
OB+OG . We will use the following bounds:

(i) UB ≥ 1
3OB ,

(ii) UG ≥ 4−3p∗
3p∗ OG ,

(iii) OB ≤
(
µ(n,d)
(p∗)

)2 (
n
3

)
,

(iv) OG ≥ (1− p∗)
(

1−
(
µ(n,d)
(p∗)

)2)(
n
3

)
.

In the above, (i) can be derived by combining Lemma C.3 with the fact that, as immediately seen from the definition of
function φ(·), we have φ(p∗) ≥ 1

3 for all p∗ ∈ [0, 1].

(ii) follows from combining Lemma C.3 with the definition of the range of values for p∗, which is (µ(d, n), 1), the inequality
µ(d, n) > 8

9 holding for all d > 3, and the definition of function φ(·).

(iii) and (iv) follow from combining Lemma C.4, with the second moment Markov’s inequality applied to L(X). This
is coupled for (iv) with the observation that for any triplet t, Rev(OPT(t)) ∈ [1− p(t), 1]. This is because, for any t, the
length of any side of a triangle having as vertices the points of t cannot be larger than p(t).

HC in the Dynamic Setting

From (i) and (ii), we have

α ≥
1
3OB + 4−3p∗

3p∗ OG

OB +OG
.

For fixed OB, this is increasing in OG and hence it is minimized for the smallest possible OG. Combining (iii) with (iv),

we obtain OG ≥ (1− p∗)
((

(p∗)
µ(d,n)

)2
− 1

)
OB. Plugging this into the above expression we get

α ≥ f(d, p∗) :=

1
3 + 4−3p∗

3p∗ (1− p∗)
((

(p∗)
µ(d,n)

)2
− 1

)
1 + (1− p∗)

((
(p∗)
µ(d,n)

)2
− 1

) .

In the above expression, we now set p∗ = 1− 1
3d , which is in the interval (µ(d, n), 1) for all d > 3. To conclude the proof

it is sufficient to show that h(d) := f
(
d, 1− 1

3d

)
− 1

3 > 0 for all real9 values d ≥ 4 and all n ≥ 605
116d. Thus, we want to

evaluate for d ≥ 4 the sign of

g(d, n) =
27nd5 − 9 (n+ 1) d4 + 3 (n− 4) d3 − 2 (n− 1) d2 − 4 (n− 1) d+ n− 1

(1− 3d)
2

(9nd3 + 3 (n− 1) d2 + 2 (n− 1) d− n+ 1)
− 1

3

=
4
(
−9d3 + 3 (n− 1) d2 − 5 (n− 1) d+ n− 1

)
3 (1− 3d)

2
(9nd3 + 3 (n− 1) d2 + 2 (n− 1) d− n+ 1)

=
n
(
12d2 − 20d+ 4

)
− 36d3 − 12d2 + 20d− 4

n (243d5 − 81d4 + 27d3 − 54d2 + 24d− 3)− 81d4 + 54d2 − 24d+ 3
.

Setting the numerator and the denominator of the above expression greater than 0 we respectively obtain

n >
36d3 + 12d2 − 20d+ 4

12d2 − 20d+ 4
=

(d+ 1)(3d− 1)2

3d2 − 5d+ 1
=

9d3 + 3d2 − 5d+ 1

3d2 − 5d+ 1
,

and

n >
81d4 − 54d2 + 24d− 3

243d5 − 81d4 + 27d3 − 54d2 + 24d− 3
=

3d2 + 2d− 1

9d3 + 3d2 + 2d− 1
.

Since for all d ≥ 4 we have
9d3 + 3d2 − 5d+ 1

3d2 − 5d+ 1
>

3d2 + 2d− 1

9d3 + 3d2 + 2d− 1
,

we can conclude that it is sufficient to have

n >
9d3 + 3d2 − 5d+ 1

3d2 − 5d+ 1
.

Finally, for all d ≥ 4, we have 605
116d ≥

9d3+3d2−5d+1
3d2−5d+1 . This is because the first derivative of 1

d
9d3+3d2−5d+1

3d2−5d+1 is

− 54d4−48d3+31d2−10d+1
d2(3d2−5d+1)2

, which is negative for all d > 3, This in turn implies that the maximum in the region d ∈ [4,∞)

can be simply obtained by plugging d = 4 into 1
d
9d3+3d2−5d+1

3d2−5d+1 , which gives 605
116 .

We now continue with the second part of the proof.

9 Although we are interested in the case d ∈ N, in this part of the analysis we treat function h by extending its domain to real numbers.

HC in the Dynamic Setting

Let now ψ(d, n) := f
(
d, 1− 1

3d

)
− 1

3 −
1

31d3 = g(d, n) − 1
31d3 . To conclude the proof, it is sufficient to show that

ψ(d, n) ≥ 0 for all d ≥ 4 and n ≥
(

9 + 38
d−3.98

)
d. We have

ψ(d, n) =

(
129d5 − 539d4 + 97d3 + 54d2 − 24d+ 3

)
n− 1116d6 − 372d5 + 701d4 − 124d3 − 54d2 + 24d− 3

(7533d8 − 2511d7 + 837d6 − 1674d5 + 744d4 − 93d3)n− 2511d7 + 1674d5 − 744d4 + 93d3
.

We will focus on the case in which both the numerator ψN (d, n) and the denominator ψD(d, n) of the above expression are
positive. We can easily show that both the terms multiplying n in ψN (d, n) and ψD(d, n) are positive for all d ≥ 4. Indeed,
for ψN (d, n) we have 129d5− 539d4 + 97d3 + 54d2− 24d+ 3, which is larger than (129d4− 539d3 + 97d2 + 54d− 24)d,
which in turn is positive for all d ≥ 4. For ψD(d, n), the expression multiplying n can be split into two terms: (i)
7533d8 − 2511d7 + 837d6 − 1674d5 which is equal to d5 times 7533d3 − 2511d2 + 837d− 1674, which in turn is positive
for all d ≥ 1, and (ii) 744d4 − 93d3 = (744d− 93)d3, which is positive for all d ≥ 1. Thus, when d ≥ 4, both ψN (d, n)
and ψD(d, n) increase as n grows. Hence, it is sufficient to evaluate the sign of both the numerator and the denominator of

ψ

(
d,

(
9 +

38

d− 3.98

)
d

)
=

=

(
129d5 − 539d4 + 97d3 + 54d2 − 24d+ 3

) (
9 + 38

d− 199
50

)
d− 1116d6 − 372d5 + 701d4 − 124d3 − 54d2 + 24d− 3

(7533d8 − 2511d7 + 837d6 − 1674d5 + 744d4 − 93d3)
(

9 + 38
d− 199

50

)
d− 2511d7 + 1674d5 − 744d4 + 93d3

=
2250d7 − 25005d6 + 93977d5 − 110826d4 + 17062d3 + 10680d2 − 4599d+ 597

93d3 (3d− 1)
2

(4050d5 + 2331d4 + 1077d3 + 265d2 + 339d− 199)
.

In the last expression, the first part of numerator (2250d4−25005d3+93977d2−110826d+17062)d3 is positive for all d ≥ 2,
and its second part 10680d2 − 4599d+ 597 is always positive for all d. The first part of the denominator 93d3 (3d− 1)

2 is
positive for all integer values of d. The last term of the denominator 4050d5 + 2331d4 + 1077d3 + 265d2 + 339d− 199 can
be split into its first part 4050d5 + 2331d4 + 1077d3 = (4050d2 + 2331d+ 1077)d3 which is always positive for all d ≥ 1,
and the last part 265d2 + 339d− 199, which is positive for all d ≥ 1. Hence, we can finally conclude that ψ(d, n) ≥ 0 for
all d ≥ 4 and n ≥

(
9 + 38

d−3.98

)
d, as claimed.

Lemma C.5. At any recursive step of URRH, the probability of accepting a randomly selected hyperplane is lower bounded
by

max

{
DC

r

√
2

π
,

2r∗C
r

√
2

3π

}
1√
d
,

for any d ∈ N and any subset of points C, where DC is the maximum pairwise distance in C, and r∗C is the radius of the
circumsphere of the convex hull of C.

Proof. We denote by Pa the probability that, at any recursive step, URRH accepts a randomly selected hyperplane. Since Pa
is clearly invariant to distance scaling, w.l.o.g. we assume that the maximum distance DC between any two points of C is
equal to 2, and we denote by x, x′ ∈ C two points such that ‖x− x′‖ = 2, with middle point m := x+x′

2 . We then denote
by r̄ the resulting scaled radius of the sphere S(C) used at any given recursive step. We recall that the center of S(C) is
denoted by c and that the hyperplane Hp.b(S(C)) = {x ∈ Rd : x · p = b} is chosen by first generating p uniformly at
random from the unit (d− 1)-sphere, and thereafter b uniformly at random from the interval [c · p− r̄, c · p+ r̄].

Let S∗(C) be the circumsphere of C, and c∗ be the center of S∗(C). Consider for the moment the special case where
S(C) = S∗(C) and r̄ = 1. In this case, we then have r̄ = r∗C and m = c = c∗.

If the Conv(C) contains some point that does not belong to the segment connecting x to x′, then Pa can only increase.
Hence, in order to find a lower bound on Pa when S(C) = S∗(C) and r̄ = 1, we can simply focus on the input case
C = {x, x′}. In this case, Pa is equal to the probability that Hp,b(S(C)) separates x from x′.

We recall that |b| is the distance between Hp,b(S(C)) and c = c∗. For any given b, we denote by C(|b|) the hyperspherical
cap obtained by cutting S(C) = S∗(C) when Hp,b(S(C)) is fixed beforehand. It is now crucially important to note that, for
each given b, the probability Pa corresponds to the probability that (see Figure 4, top, for reference):

HC in the Dynamic Setting

Figure 4: Lower bounding the probability that URRH accepts hyperplane Hp,b(S(C)). Top: Unit Sphere S(C) = S∗(C) for d = 3
and set of points C = {x, x′} with scaled maximum distance in C equal to DC := ‖x− x′‖ = 2 and r̄ = r∗C = 1. The middle point
m of the segment connecting x to x′ is therefore 1

2
(x+ x′). Our goal is to calculate the probability that Hp,b(S(C)) separates x from

x′. To this effect, we view instead plane Hp,b(S(C)) as fixed beforehand and calculate the probability that x or x′ belong to spherical
cap C(|b|), once x is selected uniformly at random on the sphere, and then integrating the result over b. Note that the position of x
uniquely determines the position of x′. In this picture, unlike x and x′, the two points y and y′ are not cut by Hp,b(S(C)) because
none of them belongs to C(|b|). Bottom: If the set of point C) {x,x′} contains more than two points, any point of C cannot be far
from m = 1

2
(x + x′) more than

√
3‖m− x‖ =

√
3‖m− x′‖. This implies that we can scale the lower bound of the probability that

Hp,b(S(C)) is accepted by dividing it by
√

3.

HC in the Dynamic Setting

(i) x is selected uniformly at random from S(C), and

(ii) x or x′ belong to C(|b|) .

For any given hyperplane H , this probability is equal to the sum of twice the area of C(|b|), divided by the area of S∗(C).
Hence, because b is chosen at uniformly at random from [c · p− r̄, c · p+ r̄], in this case

Pa ≥
∫ R∗C

−R∗C

2Area(C(|b|))
Area(S∗)

db = 4

∫ R∗C

0

Area(C(|b|))
Area(S∗)

db .

It is well known (e.g., (Li, 2011)) that, the area of a hyperspherical cap C with height h of a unit (d − 1)-sphere, can be
expressed as

Area(C) =
1

2
Area(S)I2h−h2

(
d− 1

2
,

1

2

)
,

where I2h−h2

(
d−1
2 , 12

)
is the regularized incomplete Beta function.

Observing that in this case for any given b ≥ 0 we have h = 1− b, we can write

Pa ≥ 4

∫ R

0

Area(C(|1− h|))
Area(S∗)

dh

= 2

∫ 1

0

I2h−h2

(
d− 1

2
,

1

2

)
dh

= 2

∫ 1

0

I2b−b2

(
d− 1

2
,

1

2

)
db

=
2

B
(
d−1
2 , 12

) ∫ 1

0

∫ 2t−t2

0

s
d−3
2 (1− s)− 1

2 dsdt (14)

=
2

B
(
d−1
2 , 12

) ∫ 1

0

∫ 1

1−
√
1−s

s
d−3
2 (1− s)− 1

2 dtds

=
2

B
(
d−1
2 , 12

) ∫ 1

0

s
d−3
2 ds

=
4

(d− 1)B
(
d−1
2 , 12

)
≥ 2

√
2

πd
,

where in (14) we used the Beta function integral form.

In order to generalize this argument and remove the initial assumptions S(C) = S∗(C) and r̄ = DC

2 = 1, it is sufficient to
observe that for any S(C) such that r̄ > DC

2 , we need to scale the final bound by dividing it by r̄, i.e., we have

Pa ≥
2

r̄

√
2

πd
.

In fact, for any given direction vector p selected by URRH and two (d− 1)-sphere S ′(C) and S ′′(C) both containing the
pair of points {x, x′} and having radius r̄′ and r̄′′, respectively, with r̄′′ ≥ r̄′, we have

|x · p− x′ · p|/r̄′′

|x · p− x′ · p|/r̄′
=
r̄′

r̄′′
.

Note that this argument is independent of the relative position of x and x′ inside the spheres. In particular, it holds even
when m does not coincide with the center of S ′(C) or that of S ′′(C).

HC in the Dynamic Setting

The above bound for Pa can be expressed in terms of DC by replacing r̄ with 2r
DC

:

Pa ≥
DC

r

√
2

πd
.

Finally, in order to express this lower bound in terms of the radius of the circumsphere of Conv(C), we observe that given
any set of points C, we have r∗C ≤

√
3‖x−x

′‖
2 =

√
3DC

2 . This is due to the fact that the distance between any point of C
and m cannot exceed

√
3DC

2 (see Figure 4, bottom, for reference). Hence, we also have

Pa ≥
2r∗C
r

√
2

3πd
.

Putting together concludes the proof.

C.1. On the computational complexity of URRH

We now briefly and informally discuss the most significant aspects of the computational complexity of URRH. The time
complexity bottleneck lies in testing whether a random hyperplane is accepted, which yields a dominant expected time of
O(t h d3/2) for inserting the (t+1)-th point, where h is the expected height of T . The worst-case space complexity is instead
O(t d). However, it is worth to point out that Lemma C.5 gives a worst-case result which applies only to pathological cases.
In practice, for real-world input datasets, whenever n� d the probability of accepting a randomly drawn hyperplane is not
as low as evinced by Lemma C.5. This suggests a number of ways for modifying URRH to design heuristics approximating
its behavior, and enjoying a remarkably better expected time complexity.

For instance, the expected time for inserting a new point (excluding the hyperplane rejection test), can be reduced in several
ways. For each subset of leaves in the subtree rooted at a given (internal) node in T , one can maintain information of a sphere
whose radius is at most twice the one of the circumsphere through a strategy that takes O(h d) expected time per insertion.
Interestingly enough, for the insert operation that splits X while descending the tree, an ad hoc data-structure exists that
makes the expected time O (t(d+ log t)) per insertion, at the cost of increasing the space complexity by O (t log t), hence
requiring O (t(d+ log t)) overall space.

Following the above implementation, the expected time of URRH can be viewed as the sum of two terms: (i) O(h d+ t(d+
log t)) = O(t(d+ log t)) and (ii) the total time for testing if a hyperplane is rejected, which still remains O(t h d3/2). Yet,
it is worth stressing that on inputs where T happens to be balanced, the worst-case expected time is dramatically reduced
even taking into account the bottleneck of the hyperplane rejection test we mentioned above. For example, if T is a complete
binary tree, the expected time complexity per insertion becomes O

(
t(d3/2 + log t)

)
.

D. One-dimensional streaming data
In this section, we present a series of results that apply to data on the real line. The first result directly applies to RCT,
for which we have E[RevS(RCT(X))] ≥ 0.83028 OptRevS

(Theorem D.1). The second result concerns an algorithm
conceived for the batch setting, that we name I-BISEC, which has a 3

4 approximation ratio for n → ∞. Although it is
smaller than the approximation ratio of RCT for d = 1, this result applies to an algorithm, I-BISEC, which has the advantage
to be deterministic (Theorem D.2). The third result is the 1

2 approximation ratio of a very simple algorithm that we name
1D–BESTCATERPILLAR, which chooses the caterpillar having the highest approximation factor between the two that can be
built following the order of one-dimensional point coordinates, in the two opposite directions (from left to right or from
right to left, representing the points on a horizontal straight line). This is interesting especially from a theoretical viewpoint
because of the simplicity of the hierarchical tree structure of the caterpillar tree, which indeed can viewed as one of the
basic ways to build a hierarchical tree. It is also a deterministic algorithm (Corollary D.3.1). We also show that there is a
randomized version achieving an 1

2 approximation ratio in expectation, which is worth to mention because of its extreme
simplicity (Theorem D.3): this algorithm just sorts the points according to their coordinates and chooses with probability 1

2
one of the two possoble directions (from left to right or from right to left). Finally, we prove that 1D–BESTCATERPILLAR
has also a 3

4 approximation ratio for the CKMM Revenue (Theorem D.4). Although we do not discuss in detail the dynamic
implementation of 1D–BESTCATERPILLAR, and we provide the result in a batch setting, this algorithm can naturally

HC in the Dynamic Setting

operate in a dynamic setting with no special modifications, with the above approximation ratio that holds at any round, i.e.,
after having received any number of points in input in sequential mode.

Theorem D.1. Given any input set X = {x1, . . . , xn} ⊆ R, we have, for n→∞,

E[RevS(RCT(X))] ≥ 0.83028 OptRevS
,

where the expectation is over the internal randomization of RCT.

Proof. The proof of this theorem follows the same line as the one of Theorem 5.3. The main idea is partitioning the set of
triplets {xi, xj , xk} of points in X into good and bad triplets based on their length, i.e., the distance between the leftmost
and rightmost point of each triplet. Note that the length of a triplet can be viewed as half the perimeter of the (degenerate)
triangle having as vertices its three points, while in Theorem 5.3 we used the perimeter of the triangle divided by 3. Note
also that when d = 1, URRH operating on (degenerate) circumspheres and RCT collapse to the same algorithm. Indeed, the
probability of accepting any (degenerate) hyperplane drawn by URRH is 1, and all threshold points are accepted as for RCT.
Hence, the approximation ratio of this theorem holds for URRH too.

To apply the same strategy as in Theorem 5.3, the main ingredients are:

• An upper bound on the average pairwise distance over the points in X (or the sum of all pairwise distances).

• A lower bound on the expected revenue for any single triplet of points in X .

• A lower bound on the expected revenue of each good triplet, expressed as a function of their length for both RCT and
OPT.

We start by upper bounding the sum of all pairwise distances in X for asymptotically for n→∞.

Without loss of generality, assume that the smallest interval containing all points of X is [0, 1] and let T = {{xi, xj , xk} :
xi, xj , xk ∈ X, i < j < k} be the set of triplets of X . For each triplet t ∈ T , let l(t) = max(t)−min(t) denote its length
and let L(X) =

∑
t∈T l(t). We claim that L(X) ≤ 3

4

(
n
3

)
(1 + o(1)). This bound is tight as witnessed by the example

where bn2 c points are at 0 and dn2 e points are at 1. To prove the bound, order the points of X by x1 ≤ . . . ≤ xn. For any
configuration of xi’s, note that L(X) is increased by making x1 = 0. This is because x1 belongs to more triplets where it is
the left end-point than where it is the right end-point. Similarly, we increase L(X) by making xn = 1. Next, setting x2 = 0
and xn−1 = 1 increases L(X) for the same reason. Continuing in this way, we find that L(X) is maximized as in the tight
example described above (for an odd number of points, L(X) is independent of the position of the middle point x(n+1)/2).

We now calculate a lower bound of the expected revenue for any single triplet of points in X as a function of its length.

Fix a triplet t = {xi, xj , xk} with xi ≤ xj ≤ xk so that l = l(t) = xk − xi. We show that its expected revenue under
RCT , E[Rev(RCT(t))] satisfies E[Rev(RCT(t))] ≥ (1 − (3 − 2

√
2)l)Rev(OPT(t)). In particular, setting l = 1, we have

E[Rev(RCT(t))] ≥ (2
√

2− 2)Rev(OPT(t)). Let a = xj − xi and b = xk − xj and assume without loss of generality that
a ≤ b. The revenue for this triplet by RCT is given by a

a+b (1− b) + b
a+b (1− a) = a+b−2ab

a+b , while it is at most 1− a for
OPT. Letting f(a, b) = a+b−2ab

(a+b)(1−a) , we are led to the following optimization problem:

minimize
a,b

f(a, b)

subject to a+ b = l and 0 ≤ a ≤ min(b, 1− b).

We compute

∂f

∂b
=

(a+ b)(1− 2a)− (a+ b− 2ab)

((a+ b)(1− a))2

=
−2a2

((a+ b)(1− a))2
≤ 0.

HC in the Dynamic Setting

Hence for a given a, f is minimized by setting b as large as possible, i.e., b = l−a. Now let g(a) = f(a, l−a) = l−2a(l−a)
l(1−a) .

Setting the derivative of g to 0 gives

(1− a∗)(4a∗ − 2l) = (l − 2a∗l + 2a∗2)(−1)

2a∗2 − 4a∗ + l = 0

a∗ = 1−
√

1− l/2.

Letting h(l) = g(1−
√

1− l/2), we thus have E[Rev(RCT(t))] ≥ h(l)Rev(OPT(t)). We now show that h(l) is convex in
l. This will give h(l) ≥ (1− l)h(0) + lh(1). Since h(0) = 1, and h(1) = 2

√
2− 2, we will have h(l) ≥ 1− (3− 2

√
2)l.

Showing h(l) is convex is tedious but straightforward. We compute the second derivative h′′(l) and show that h′′(l) ≤ 0.
Letting s = s(l) =

√
1− l/2, we simplify h(l):

h(l) = g(1− s)

=
l − 2(1− s)(l − 1 + s)

ls

=
l − 2(l − 1 + s− (l − 1)s− 1 + l/2)

ls
(using s2 = 1− l/2)

=
2(2− l)(1− s)

ls

=
4s2(1− s)
(2− 2s2)s

(using l = 2− 2s2)

= 2(1− 1/(1 + s)).

Using ds
dl = − 1

4s , we have h′(l) = 2
(1+s)2

(
− 1

4s

)
= − 1

2s(1+s)2 . Finally, h′′(l) = − 1
2

(
− 2
s(1+s)3 −

1
s2(1+s)2

) (
− 1

4s

)
which is clearly non-positive.

We now fix p ∈ (3
4 , 1) (we will choose p later to optimize the approximation ratio) and split T into two sets: The bad triplets

Bp = {t ∈ T : l(t) > p} and good triplets Gp = {t ∈ T : l(t) ≤ p}. Define the following quantities:

(i) RB =
∑
t∈Bp

E[Rev(RCT(t))],

(ii) RG =
∑
t∈Gp

E[Rev(RCT(t))],

(iii) OB =
∑
t∈Bp

Rev(OPT(t)), and

(vi) OG =
∑
t∈Gp

Rev(OPT(t)).

We wish to minimize α = RB+RG
OB+OG . We will use the following bounds:

(i) RB ≥ (2
√

2− 2)OB,

(ii) RG ≥
(
1− (3− 2

√
2)p
)
OG,

(iii) OB ≤ 3/4
p

(
n
3

)
, and

(vi) OG ≥
(
1− p

2

) (
1− 3/4

p

) (
n
3

)
.

(i) and (ii) follow from the lower bound on E[Rev(RCT(t))] established above. (iii) and (iv) follow from Markov’s inequality
applied to the sum of lengths upper-bound coupled with the observations that for a triplet t, Rev(OPT(t)) ∈ [1− l(t)/2, 1].

From (i) and (ii), we have α ≥ (2
√
2−2)OB+(1−(3−2

√
2)p)OG

OB+OG . For fixed OB, this is increasing in OG and hence is
minimized for the smallest possible OG. Combining (iii) and (iv), we obtain OG ≥

(
1− p

2

) (
4
3p− 1

)
OB. Plugging this

into the above expression we get

α ≥
2
√

2− 2 +
(
1− (3− 2

√
2)p
) (

1− p
2

) (
4
3p− 1

)
1 +

(
1− p

2

) (
4
3p− 1

) .

HC in the Dynamic Setting

Maximizing this over p ∈ (3/4, 1) yields a maximum of α ≥ 0.83028, which can be obtained by setting p = 0.8633.

The I-BISEC algorithm

We now describe a very simple yet efficient divisive algorithm for one-dimensional input data, that we call I-BISEC (Interval-
Bisection), having an MW revenue lower bounded by 3

4OptRevS
for n → ∞. At the first round this algorithm selects a

threshold τ equal to the middle point between the leftmost and the rightmost input points (representing horizontally the
one-dimensional straight line containing the whole input X). In the subsequent rounds, I-BISEC proceeds recursively with
the two subsets of points respectively lying on the two semi-intervals separated by τ , until the number of points processed in
a single recursion step is equal to 1. We highlight that the choice of threshold point τ , at each round, only depends on the
leftmost and the rightmost input points of each subset of points considered. Finally, in the special case in which n′ points
are coincident with the selected threshold τ in a recursive step of the algorithm,

⌊
n′

2

⌋
are placed in the left partition and⌈

n′

2

⌉
in the right partition.

Besides being easy to implement, this algorithm is also computationally very efficient. It is not difficult to verify that using
a balanced binary tree where each leaf contains one point of X , we can easily find the points closest to the middle point
threshold of each sub-interval considered. Hence, the worst-case time complexity is O(n log n), while the space required is
always equal to O(n).

The following theorem quantifies the approximation ratio of I-BISEC.

Theorem D.2. Given any input set X = {x1, . . . , xn} ⊆ R with n ≥ 3, we have

E[RevS(I-BISEC(X))] ≥ 3n− 8

4n− 8
OptRevS

.

Proof. Without loss of generality, assume that the smallest interval containing all points of X is [0, 1] and that the xi’s are
in non-decreasing order. Let n′ and n′′ be the number of points respectively in

[
0, 12
]

and
(
1
2 , 1
]
.

Thus we have
0 = x1 ≤ x2 ≤ . . . ≤ xn′ ≤ 1

2 ≤ xn′+1 ≤ xn′+2 · · · ≤ xn′+n′′ ≡ xn = 1 .

Without loss of generality, assume now that n′ ≥ n′′, which implies n′ ≥ 2. The sum of all pairwise distances between any
two points in [0, 12] is

∑
1≤i<j≤n′

(xj − xi) = (0− (n′ − 1))x1 + (1− (n′ − 2))x2 − . . .+ ((n′ − 1)− 0)xn′

= −(n′ − 1)x1 − (n′ − 3)x2 − . . .− (1− n′)xn′

= −
n′∑
k=1

(n′ − (2k − 1))xk

= −
d(n′−1)/2e∑

k=1

(n′ − (2k − 1))xk −
n′∑

k′=d(n′+1)/2e

(n′ − (2k′ − 1))xk′

= −
d(n′−1)/2e∑

k=1

(n′ − (2k − 1))xk +

b(n′+1)/2c∑
`=1

(2`− 1− (n′ mod 2))x`+d(n′−1)/2e

≤ −
d(n′−1)/2e∑

k=1

(n′ − (2k − 1)) · 0 +

b(n′+1)/2c∑
`=1

(2`− 1− (n′ mod 2)) · 1/2 .

HC in the Dynamic Setting

The above inequality shows that maximum of this sum is attained when the leftmost half of points in the interval
[
0, 12
]

is placed at 0 and the rightmost half is placed at10 1
2 . This immediately implies that the average pairwise distance of the

points in [0, 12] is upper bounded by dn
′/2ebn′/2c

(n′
2)

1
2 ≤

1
4

(
1 + 1

n′−1

)
. Analogously, the average pairwise distance of the

points in (1
2 , 1] is upper bounded by dn

′′/2ebn′′/2c
(n′′

2)
1
2 ≤

1
4

(
1 + 1

n′′−1

)
if11 n′′ ≥ 2. Let now r′ and r′′ be respectively

1− 1
4

(
1 + 1

n′−1

)
and 1− 1

4

(
1 + 1

n′′−1

)
. We can finally state that the approximation factor of I-BISEC corresponding to

the triplets broken by the first cut solely, is lower bounded by(
n′(n′−1)

2 n′′r′ + n′′(n′′−1)
2 n′r′′

)
(
n′(n′−1)

2 n′′ + n′′(n′′−1)
2 n′

) .

It is easy to verify that, when n′ + n′′ = n, the above expression is exactly equal to 3n−8
4n−8 . To conclude the proof, we

observe that for all the subsets of triplets broken by subsequent cuts, the corresponding approximation factor cannot be
smaller than the one obtained by analyzing the triplets broken by the first cut. Indeed, the sub-intervals split by the other
cuts are narrower than [0, 1]. Hence, the approximation factor of I-BISEC is lower bounded by 3n−8

4n−8 , as claimed.

The 1D–BESTCATERPILLAR algorithm

When d = 1, a baseline method consists in selecting the caterpillar tree that is (i) compatible with the Euclidean metric of the
input points and (ii) has the maximum MW revenue. This selection is performed considering only the two caterpillar trees
embedded in a plane P where the points lies on a straight line L contained in P . More precisely, their vertices are contained
in P such that the edges, represented by line segments on P , do not cross. The points are embedded on L preserving all
distances di,j between any two points xi and xj . As anticipated above, there are only two such caterpillar trees: representing
L horizontally, one of these two caterpillars trees clusters the points from left to right, that we call 1D–LEFTCATERPILLAR.
The other caterpillar tree clusters the points from right to left, that we call 1D–RIGHTCATERPILLAR. This algorithm, that
we call 1D–BESTCATERPILLAR, outputs the caterpillar tree having the maximum MW revenue.

Note that we can use Theorem D.3 to state that, once we build the two caterpillars (which can be done in a very easy
and fast way, i.e., with a worst-case time complexity equal to O(n log n)), if we select 1D–LEFTCATERPILLAR and
1D–RIGHTCATERPILLAR both with probability 1

2 , then we obtain an expected approximation ratio equal to 1
2 .

Moreover, even the deterministic algorithm 1D–BESTCATERPILLAR can be easily implemented with a total worst-case
time complexity equal to O(n log n). We now briefly sketch the implementation for computing the revenue of 1D–
LEFTCATERPILLAR. The strategy to calculate the revenue of 1D–RIGHTCATERPILLAR is analogous because of the
symmetry between the two caterpillars. We first generate an array A[] where the i-th record stores the i-th point coordinate
in an non-decreasing order. This operation requires O(n log n) time because we need to sort thee n coordinates. Let di be
the distance between the first (leftmost) element and the i-th element. We now scan A[] from the first to the last element,
to associate with the i-th element both the distance di and the sum

∑
j<i dj . This operation requires O(n) time. The key

point in this implementation is the following. To compute the revenue of all triplets having xk as middle point, we simply
need to sum D − dj,k = D − (dk − dj) over all j < k, and multiply the result by n− k. To see why, observe that using
1D–LEFTCATERPILLAR, only the distances between xk and the elements on its left will contribute to the total revenue, and
we have n− k elements on the right of k. Hence, the total revenue contribution of all triplets having xk as middle point is
equal to

(n− k)
∑
j<k

(D − dj,k) = (n− k)
∑
j<k

(D − (dk − dj)) = (n− k)

(k − 1)(D − dk) +
∑
j<k

dj

 ,

10If n′ is odd, then the middle point x(n′+1)/2 can be anywhere in [0, 1
2
]. For the sake of simplicity, we set it to be equal to 1

2
in the

above inequality.
11If n′′ = 1 there are no pairs of points in

(
1
2
, 1
]
.

HC in the Dynamic Setting

which can now be easily calculated for all k ∈ [n] by scanning A[] from left to right because we previously stored dk and∑
j<k dj for all k ∈ [n]. This operation requires therefore a total time equal to O(n). Hence, we can compute the revenue

of 1D–LEFTCATERPILLAR, and, by symmetry, of 1D–RIGHTCATERPILLAR, in time O(n log n) +O(n) = O(n log n).
Finally, to determine the caterpillar 1D–BESTCATERPILLAR, we only need to find the maximum value by comparing the
revenues of 1D–LEFTCATERPILLAR and 1D–RIGHTCATERPILLAR, which can be done in constant time once we have the
two revenue values.

Theorem D.3. Given any input set X = {x1, . . . , xn} ⊆ R, we have

RevS(1D–LEFTCATERPILLAR(X)) + RevS(1D–RIGHTCATERPILLAR(X)) ≥ OptRevS
.

Proof. For each i ∈ [n], we denote by di the Euclidean distance between the first and the i-th input point xi on L, from left
to right where L is viewed as a horizontal line. For the sake of simplicity, hereinafter we indicate point x` for any ` ∈ [n] by
simply writing its index `.

Note that for any tree T , for any triplet {i, j, k}, where i, j, k ∈ [n] such that i < j < k, there are only two possible cases:

1. If i and j are clustered before k, then we have an MW gain equal to D − (dj − di).

2. If j and k are clustered before i, then we have an MW gain equal to D − (dk − dj).

Let now T be the set of all triplets {i, j, k}, where i, j, k ∈ [n] such that i < j < k. Let T` ⊆ T and Tr ⊆ T be respectively
defined as the following set of triplets12

T` = {{i, j, k} : i, j, k ∈ [n], i < j < k, D − (dj − di) ≥ D − (dk − dj)} ,

Tr = {{i, j, k} : i, j, k ∈ [n], i < j < k, D − (dk − dj) > D − (di − dj)} .

We have therefore T = T` ∪ Tr and T` ∩ Tr = ∅.

Thus, OptRevS
can be bounded as follows:

OptRevS
≤

∑
{i,j,k}∈T :
i<j<k

max{D − (dj − di), D − (dk − dj)}

=

 ∑
{i,j,k}∈T`:
i<j<k

D − (dj − di)

+

 ∑
{i,j,k}∈Tr:
i<j<k

D − (dk − dj)

 .

Let now 1D–LEFTCATERPILLAR and 1D–RIGHTCATERPILLAR be the caterpillar trees following the order of the points
on L respectively from left to right and from right to left. Note that, for all triplets {i, j, k}, where i, j, k ∈ [n] such that
i < j < k, we have that i and j are clustered before k using 1D–LEFTCATERPILLAR, while j and k are clustered before i
using 1D–RIGHTCATERPILLAR. Then, we can write the MW revenue of each caterpillar tree as the sum of two terms as we
previously did for OPT:

RevS(1D–LEFTCATERPILLAR(X)) =

 ∑
(i,j,k)∈T`:
i<j<k

D − (dj − di)

+

 ∑
(i,j,k)∈Tr:
i<j<k

D − (dj − di)

 ,

12The triplets for which dj − di = dk − dj can be included arbitrarily either into T` (as we did above) or Tr , without affecting the rest
of the proof.

HC in the Dynamic Setting

and

RevS(1D–RIGHTCATERPILLAR(X)) =

 ∑
(i,j,k)∈T`:
i<j<k

D − (dk − dj)

+

 ∑
(i,j,k)∈Tr:
i<j<k

D − (dk − dj)

 .

It is now sufficient to inspect the two terms above of each MW revenue, i.e., the one of 1D–LEFTCATERPILLAR, 1D–
RIGHTCATERPILLAR and OPT, to finally state

RevS(1D–LEFTCATERPILLAR(X)) + RevS(1D–RIGHTCATERPILLAR(X)) ≥ OptRevS
,

as claimed.

An immediate consequence of Theorem D.3 is the following corollary on the approximation ratio of
RevS(1D–BESTCATERPILLAR).

Corollary D.3.1. Given any input set X = {x1, . . . , xn} ⊆ R, we have

RevS(1D–BESTCATERPILLAR(X)) ≥ 1

2
OptRevS

.

Finally we have the following analogous result for the CKMM Revenue.

Theorem D.4. Given any input set X = {x1, . . . , xn} ⊆ R, we have

RevD(1D–BESTCATERPILLAR(X)) ≥ 3

4
OptRevD

.

Proof. We begin by renaming our data points such that they correspond with the 1-d metric. I.e., such that i < j
if and only if di < dj . By considering the triplet-wise formulation given in Section B.2 it is clear that OptRevD

≤∑
i<j<k max{di,j + di,k, di,j + dj,k, di,k + dj,k}. Since i < j < k we are guaranteed that di,j + dj,k = di,k and thus

max{di,j+di,k, di,j+dj,k, di,k+dj,k} = max{di,j+di,k, di,k+dj,k}. Therefore, OptRevD
≤
∑

max{di,j+di,k, di,k+
dj,k} ≤

∑
2di,k.

On the other hand, for every triplet i < j < k, 1D–LEFTCATERPILLAR clusters xi, xj before clustering
xk and 1D–RIGHTCATERPILLAR clusters xj , xk before xi. Therefore, RevD(1D–BESTCATERPILLAR(X)) =
max{

∑
i<j<k(di,j + di,k),

∑
i<j<k(dj,k + di,k)} ≥

∑
1
2 (di,j + di,k) + 1

2 (dj,k + di,k) =
∑

3
2di,k. Thus overall,

RevD(1D–BESTCATERPILLAR(X)) ≥ 3
4OptRevD .

E. Supplementary material for Section 6
In this section we expand on the experimental results from Section 6. Table 4 shows several characteristics of the datasets
we used in our experiments: the number of points n, the dimensionality d, the number of ground-truth clusters, and a
description of the input.

Dataset n d #classes Description

MNIST 6.0 · 104 784 10 Image pixels
ILSVRC12 1.3 · 106 512 1000 ResNet34 embeddings

ALOI 1.1 · 105 128 1000 Color Histograms
OneG 1.0 · 104 2 1 Standard Gaussian
TwoG 1.0 · 104 2 2 Two Standard Gaussians, 4σ separation in one dimension

Table 4: Summary of datasets used in the experiments in Section 6.

HC in the Dynamic Setting

MNIST ILSVRC12 ALOI OneG TwoG

RCT 0.93±0.01 0.94±0.0 0.91±0.01 0.90±0.01 0.90±0.06
URRH 0.93±0.0 0.94±0.0 0.90±0.01 0.90±0.01 0.90±0.03
BIRCH 0.93 0.94 0.91 0.87 0.98
PERCH 0.92 0.94 0.91 0.87 0.90

GRINCH 0.93 0.93 0.89 0.88 0.97
PROJECTED RANDOM CUT 0.92±0.0 0.94±0.0 0.88±0.01 0.87±0.0 0.86±0.07

RANDOM 0.92 0.93 0.85 0.74 0.71
UPPER BOUND 1.0 1.0 1.0 1.0 1.0

Table 5: MW Revenue approximation factors using RBF kernel similarity; ↑ is better. Each revenue is shown as a percentage of the
corresponding upper bound for that dataset.

The other four tables in this section show the values of the four objective measures we consider in this paper, as a percentage
of the upper bound (for Revenue measures), resp. lower bound (for Cost measures) for the specific dataset. The MW
Revenue table is also shown in the main body of the paper, but we include it here, as well, for ease of comparison with the
other results.

As discussed in the body, the trends observed for the MW Revenue objective are also observed in the CKMM Revenue,
Dasgupta Cost, and MW Cost objectives. Namely, RCT and URRH excel on OneG where the data are noisy, but are
outperformed by other algorithms on TwoG where ground truth cluster separation is apparent. In addition, RCT and URRH
perform competitively on all real-world datasets.

MNIST ILSVRC12 ALOI OneG TwoG

RCT 0.96±0.0 0.97±0.0 0.95±0.0 0.94±0.0 0.93±0.04
URRH 0.96±0.0 0.97±0.0 0.94±0.0 0.94±0.0 0.93±0.03
BIRCH 0.96 0.97 0.95 0.91 0.98
PERCH 0.96 0.97 0.94 0.91 0.93

GRINCH 0.96 0.97 0.94 0.92 0.98
PROJECTED RANDOM CUT 0.96±0.0 0.97±0.0 0.93±0.01 0.92±0.0 0.91±0.04

RANDOM 0.95 0.97 0.91 0.83 0.80
UPPER BOUND 1.0 1.0 1.0 1.0 1.0

Table 6: CKMM Revenue approximation factors using `2-distance; ↑ is better. Each revenue is shown as a percentage of the corresponding
upper bound for that dataset.

HC in the Dynamic Setting

MNIST ILSVRC12 ALOI OneG TwoG

RCT 1.04±0.0 1.03±0.0 1.06±0.01 1.08±0.01 1.10±0.05
URRH 1.04±0.0 1.03±0.0 1.07±0.01 1.08±0.0 1.09±0.04
BIRCH 1.04 1.03 1.06 1.11 1.02
PERCH 1.04 1.03 1.06 1.11 1.09

GRINCH 1.04 1.04 1.07 1.10 1.03
PROJECTED RANDOM CUT 1.05±0.0 1.03±0.0 1.07±0.01 1.1±0.0 1.13±0.06

RANDOM 1.05 1.04 1.10 1.21 1.26
LOWER BOUND 1.0 1.0 1.0 1.0 1.0

Table 7: Dasgupta Cost approximation factors using RBF kernel similarity; ↓ is better. Each cost is computed relative to the lower bound
for that dataset.

MNIST ILSVRC12 ALOI OneG TwoG

RCT 1.08±0.01 1.07±0.0 1.14±0.01 1.27±0.02 1.34±0.19
URRH 1.09±0.0 1.07±0.0 1.16±0.01 1.26±0.02 1.34±0.15
BIRCH 1.08 1.06 1.14 1.36 1.09
PERCH 1.09 1.07 1.15 1.36 1.34

GRINCH 1.09 1.08 1.17 1.32 1.10
PROJECTED RANDOM CUT 1.1±0.01 1.07±0.0 1.18±0.02 1.34±0.01 1.47±0.22

RANDOM 1.10 1.08 1.24 1.71 2.00
LOWER BOUND 1.0 1.0 1.0 1.0 1.0

Table 8: MW Cost approximation factors using `2-distance; ↓ is better. Each cost is computed relative to the lower bound for that dataset.

