
Fast and Optimal Algorithms
for Weighted Graph Prediction

Nicolò Cesa-Bianchi
Università di Milano, Italy

cesa-bianchi@dsi.unimi.it

Claudio Gentile
Università dell’Insubria, Italy

claudio.gentile@uninsubria.it

Fabio Vitale
Università di Milano, Italy
fabio.vitale@unimi.it

Giovanni Zappella
Università di Milano, Italy

giovanni.zappella@studenti.unimi.it

Abstract
We show that the mistake bound for predicting the nodes of an arbitrary weighted
graph is characterized (up to logarithmic factors) by the weighted cutsize of a ran-
dom spanning tree of the graph. The cutsize is induced by the unknown adversarial
labeling of the graph nodes. In deriving our characterization, we obtain a simple
randomized algorithm achieving the optimal mistake bound on any graph. Our
algorithm draws a random spanning tree of the original graph and then predicts
the nodes of this tree in constant amortized time and linear space. Preliminary
experiments on real-world datasets show that our method outperforms both global
(Perceptron) and local (majority voting) methods.

1 Introduction
A widespread approach to the solution of classification problems is representing the data through a
weighted graph in which edge weights quantify the similarity between data points. This technique
for coding input data has been applied to several domains, including Web spam detection [12],
classification of genomic data [17], recognition of faces [5], and text categorization [8]. In most
applications, edge weights are computed through a complex data-modelling process and convey
crucially important information for classifying nodes.

This paper focuses on the online version of the graph classification problem: the entire graph is
known in advance and, at each step, the algorithm is required to predict the label of a new arbitrarily
chosen node. In the special case of unweighted graphs (where all edges have unit weight) a key
parameter for controlling the number of prediction mistakes is the size of the cut induced by the
unknown adversarial labeling of the graph. Although in the unweighted case previous studies use
the cutsize to prove several interesting upper bounds [11, 10, 12], no general lower bounds on the
number of prediction mistakes are known, leaving fully open the question of characterizing the
complexity of learning a labeled graph. In a recent paper [4] the expected number of mistakes is
bounded by the cutsize of a random spanning tree of the graph, a quantity stricly smaller than the
cutsize of the whole graph. In this paper we show that this quantity captures the hardness of the
graph learning problem, even in the general weighted case (where the expectation suitably depends
on the edge weights). Given any weighted graph, we prove that any prediction algorithmmust err on
a number of nodes which is at least as big as the weighted cutsize of the graph’s random spanning
tree. Moreover, if the ratio of the largest to the smallest weight is polynomial in the number of nodes,
we exhibit a simple algorithm achieving (to within logarithmic factors) the optimal mistake bound.

Following [4], our algorithm first extracts a random spanning tree of the original graph, and then
predicts all nodes of this tree using a generalized variant of the method proposed in [11]. Our tree
prediction procedure is extremely efficient: it only requires constant amortized time per prediction
and space linear in the number of nodes. Note that computational efficiency is a central issue in
practical applications where the involved datasets can be very large. Indeed, learning algorithms

1

whose time complexity scales, say, more than quadratically with the number of data points should
be considered impractical.

A significant contribution of this work is the experimental evaluation of our method, as compared
to methods recently proposed in the literature on graph prediction. In particular, we compare our
algorithm to the Perceptron algorithm with Laplacian kernel [10, 12], and to simple majority vote
predictors. The experiments have been carried out on two medium-size biological datasets from [6].
The two tree-based algorithms (ours and the Perceptron) have been tested using spanning trees
generated in various ways. Though preliminary in nature, our experimental comparison shows that,
in terms of the online mistake count, our algorithm always outperforms the tested competitors while
using the least amount of time and memory resources.

2 Preliminaries and basic notation
LetG = (V, E, W) be an undirected, connected, and weighted graph with n nodes and positive edge
weights wi,j > 0 for (i, j) ∈ E. A labeling of G is any assignment y = (y1, . . . , yn) ∈ {−1, +1}n

of binary labels to its nodes. We use (G, y) to denote the resulting labeled weighted graph. The
online learning protocol for predicting (G, y) is defined as follows. The learner is given G while y

is kept hidden. The nodes of G are presented to the learner one by one, according to an unknown
and arbitrary permutation i1, . . . , in of V . At each time step t = 1, . . . , n node it is presented and
the learner must predict its label yit

. Then yit
is revealed and the learner knows whether a mistake

occurred. The learner’s goal is to minimize the total number of prediction mistakes.

It is reasonable to expect that prediction performance should degrade with the increase of ”ran-
domness” in the labeling. For this reason, our analysis of graph prediction algorithms bounds from
above the number of prediction mistakes in terms of appropriate notions of graph label regularity.
A standard notion of label regularity is the cutsize of a labeled graph, defined as follows. A φ-edge
of a labeled graph (G, y) is any edge (i, j) such that yi #= yj . Similarly, an edge (i, j) is φ-free if
yi = yj . Let Eφ ⊆ E be the set of φ-edges in (G, y). The cutsize ΦG(y) of (G, y) is the number
of φ-edges in ΦG(y), i.e., ΦG(y) =

∣∣Eφ
∣∣ (independent of the edge weights). The weighted cutsize

ΦW
G (y) of (G, y) is ΦW

G (y) =
∑

(i,j)∈Eφ wi,j .

Fix (G, y). Let rW
i,j be the effective resistance (see, e.g., [15]) between nodes i and j of G. For

(i, j) ∈ E, let also pi,j = wi,jrW
i,j = wi,j

/(
wi,j + 1/r̃W

i,j

)
be the probability that (i, j) belongs to a

random spanning tree T [15]. Here r̃W
i,j denotes the effective resistance between i and j when edge

(i, j) is eliminated —if (i, j) is a bridge, whose elimination disconnectsG, we set 1/r̃W
i,j = 0. Then

we have
E ΦT (y) =

∑

(i,j)∈Eφ

pi,j =
∑

(i,j)∈Eφ

wi,j

wi,j + 1/r̃W
i,j

. (1)

Since
∑

(i,j)∈E pi,j is equal to n − 1, irrespective of the edge weighting, the ratio 1
n−1E ΦT (y) ∈

[0, 1] provides an edge density-independent measure of the cutsize in G. and allows one even to
compare labelings on different graphs. It is also important to note that E ΦT (y) can be much
smaller than ΦW

G (y) when there are strongly connected regions in G contributing prominently to
the weighted cutsize. To see this, consider the following scenario: If (i, j) ∈ Eφ and wi,j is large,
then (i, j) gives a big contribution to ΦW

G (y). However, this might not happen in E ΦT (y). In fact,
if i and j are strongly connected (i.e., if there are many disjoint paths connecting them), then r̃W

i,j is
very small, thus the termswi,j/(wi,j +1/r̃W

i,j) in (1) are small too. Therefore, the effect of the large
weight wi,j may often be compensated by the small probability of including (i, j) in the random
spanning tree.

3 A lower bound for any weighted graph
We start by proving a general lower bound, showing that any prediction algorithm must err at least
E ΦT (y) times on any weighted graph.

Theorem 1 LetG = (V, E, W) be a weighted undirected graph with n nodes and weightswi,j > 0
for (i, j) ∈ E. Then for all K ≤ n there exists a randomized labeling y of G such that for all
(deterministic or randomized) algorithmsA, the expected number of prediction mistakes made by A
is at least K/2, while E ΦT (y) < K .

2

Proof. The adversary uses the weighting P induced by W and defined by pi,j = wi,jrW
i,j . Note

that pi,j is the probability that edge (i, j) belongs to a random spanning tree T of G. Hence∑
(i,j)∈E pi,j = n − 1 and ΦP

G(y) = E ΦT (y) for any given labeling y of G. Let Pi =
∑

j pi,j

be the sum over the induced weights of all edges incident to node i. We call Pi the weight of
node i. Let S ⊆ V be the set of K nodes i in G having the smallest weight Pi. The adversary
assigns a random label to each node i ∈ S. This guarantees that, no matter what, the algorithm
A will make on average K/2 mistakes on the nodes in S. The labels of the remaining nodes
in V \ S are set either all +1 or all −1, depending on which one of the two choices yields the
smaller ΦP

G(y). We now show that the weighted cutsize ΦW
P (y) of this labeling y is less than

K , independent of the labels of the nodes in S. Since the nodes in V \ S have all the same la-
bel, the φ-edges induced by this labeling can only connect either two nodes in S or one node in
S and one node in V \ S. Hence ΦW

P (y) = ΦP,int
G (y) + ΦP,ext

G (y), where ΦP,int
G (y) is the

cutsize contribution within S, and ΦP,ext
G (y) is the one from edges between S and V \ S. Let

P int
S =

∑
(i,j)∈E : i,j∈S pi,j and P ext

S =
∑

(i,j)∈E : i∈S,j∈V \S pi,j . From the very definition of
P int

S and ΦP,int
G (y) we have ΦP,int

G (y) ≤ P int
S . Moreover, from the way the labels of nodes in

V \ S are selected, it follows that ΦP,ext
G (y) ≤ P ext

S /2. Finally,
∑

i∈S Pi = 2P int
S + P ext

S holds,
since each edge connecting nodes in S is counted twice in the sum

∑
i∈S Pi. Putting everything

together we obtain

2P int
S + P ext

S =
∑

i∈S

Pi ≤
K

n

∑

i∈V

Pi =
2K

n

∑

(i,j)∈E

pi,j =
2K(n− 1)

n

the inequality following from the definition of S. Hence

E ΦT (y) = ΦP
G(y) = ΦP,int

G (y) + ΦP,ext
G (y) ≤ P int

S +
P ext

S

2
≤

K(n − 1)

n
< K .

!

4 The Weighted Tree Algorithm for weighted trees
In this section, we describe the Weighted Tree Algorithm (WTA) for predicting the labels of a
weighted tree. In Section 6 we show how to apply WTA to solve the more general weighted graph
prediction problem. WTA first turns the tree into a line graph (i.e., a list), then runs a fast nearest
neighbor method to predict the labels of each node in the line. Though this technique is similar to
that one used in [11], the fact that the tree is weighted makes the analysis significantly more difficult.

Given a labeled weighted tree (T, y), the algorithm initially creates a weighted line graph L′ con-
taining some duplicates of the nodes in T . Then, each duplicate node (together with its incident
edges) is replaced by a single edge with a suitably chosen weight. This results in the final weighted
line graph L which is then used for prediction. In order to create L from T , WTA performs the
following tree linearization steps:

1. An arbitrary node r of T is chosen, and a line L′ containing only r is created.
2. Starting from r, a depth-first visit of T is performed. Each time an edge (i, j) is traversed
(even in a backtracking step), the edge is appended toL′ with its weightwi,j , and j becomes
the current terminal node of L′. Note that backtracking steps can create in L′ at most one
duplicate of each edge in T , while nodes in T may be duplicated several times in L′.

3. L′ is traversed once, starting from terminal r. During this traversal, duplicate nodes are
eliminated as soon as they are encountered. This works as follows. Let j be a duplicate
node, and (j′, j) and (j, j′′) be the two incident edges. The two edges are replaced by a
new edge (j′, j′′) having weight wj′,j′′ = min

{
wj′,j , wj,j′′

}
.1 Let L be the resulting line.

The analysis of Section 5 shows that this choice of wj′,j′′ guarantees that the weighted cutsize of L
is smaller than twice the weighted cutsize of T . Once L is created from T , the algorithm predicts the
label of each node it using a nearest-neighbor rule operating on L with a resistance distancemetric.

1By iterating this elimination procedure, it might happen that more than two adjacent nodes get eliminated.
In this case, the two surviving terminal nodes are connected in L by the lightest edge among the eliminated
ones in L

′.

3

That is, the prediction on it is the label of is∗ , being s∗ = argmins<t d(is, it) the previously revealed
node closest to it, and d(i, j) =

∑k
s=1 1/wvs,vs+1

is the sum of the resistors (i.e., reciprocals of edge
weights) along the (unique) path i = v1 → v2 → · · · → vk+1 = j connecting node i to node j.

5 Analysis
In this section we derive an upper bound on the number of mistakes made by WTA on any weighted
tree T = (V, E, W) in terms of the number of φ-edges, the weighted cutsize, and the sum of resistors
of φ-free edges, RW

T =
∑

(i,j)∈E\Eφ 1/wi,j . The following lemma establishes some simple but
important relationships between the tree T and its linearized version L. Theorem 3 below exploits
this lemma to bound the total number of mistakes on any tree.

From the construction in Section 4 we see that when we transformL′ into L the pairs of edges (j′, j)
and (j, j′′) of L′ which are incident to a repeated node j get replaced in L (together with j) by a
single edge (j′, j′′)—step 3 in Section 4. We call these edges spurious edges. Assume that (j′, j′′)
is spurious in L. When yj′ #= yj′′ we have created a spurious φ-edge by eliminating a φ-edge and a
φ-free edge from L′. When yj′ = yj′′ #= yj , we have created a spurious φ-free edge by eliminating
two φ-edges from L′. LetRW

0 be the sum of resistors of all spurious φ-free edges created during the
elimination of pairs of φ-edges in L′.

Lemma 2 Let (T, y) be a labeled tree, (L, y) be a linearized version of it, and L′ be the line
graph with duplicates (as described in Section 4). Then the following holds: RW

L ≤ RW
L′ + RW

0 ≤
2RW

T + RW
0 , ΦW

L (y) ≤ ΦW
L′ (y) ≤ 2ΦW

T (y), and ΦL(y) ≤ ΦL′(y) ≤ 2ΦT (y).

Proof. Note that each edge of T occurs in L′ at least once and at most twice. This provesΦW
L′ (y) ≤

2ΦW
T (y) and ΦL′(y) ≤ 2ΦT (y). Note further that L contains some non-spurious edges from L′

plus a number of spurious edges. Each spurious φ-free edge (j′, j′′) can be created (by eliminating
a node j) when either (i) yj′ = yj′′ = yj , which implies that wj′,j′′ corresponds to the weight of
a φ-free edge eliminated in L′ together with node j, and thus wj′,j′′ is not included in RW

0 ; or (ii)
yj′ = yj′′ #= yj , which implies that wj′,j′′ is included in RW

0 . This proves the first inequality. To
prove the remaining inequalities, first note that a spurious edge (j′, j′′) cannot be a φ-edge in L
unless either (j, j′) or (j, j′′) is a φ-edge in L′. Moreover, if (j′, j′′) is a φ-edge in L, then its weight
is not larger than the weight of the associated φ-edge in L′ —Step 3 in Section 4. !

Theorem 3 If WTA is run on a weighted and labeled tree (T, y), then the total number mT of
mistakes satisfies

mT = O

(
ΦT (y)

(
1 + log

(
1 +

RW
T ΦW

T (y)

ΦT (y)

)))
.

The mistake bound in Theorem 3 shows, in the logarithmic factors, that the algorithm takes advan-
tage of labelings such that the weights of φ-edges are small (thus making ΦW

T (y) small) and the
weights of φ-free edges are high (thus making RW

T small). This somehow matches the intuition
behind WTA’s nearest-neighbor rule according to which nodes that are close to each other are ex-
pected to have the same label. In particular, observe that the way the above quantities are combined
makes the bound independent of rescaling of the edge weights. Again, this has to be expected, since
WTA’s prediction is scale insensitive. On the other hand, it may appear less natural that the mistake
bound also depends linearly on the cutsize ΦT (y), independent of the edge weights. As a matter of
fact, this linear dependence on the unweighted cutsize cannot be eliminated (this is a consequence
of Theorem 1 in Section 3).

The following lemma (proof omitted due to space limitations) proves a mistake bound for any
weighted line graph. It also shows that, for any K ≥ 0, one can drop from the bound the con-
tribution of any set ofK resistors in RL

T at the cost of addingK extra mistakes.

Lemma 4 If WTA is run on a weighted line graph (L, y), then the total number mL of mistakes
satisfies

mL = O

(

ΦL(y)

(

1 + log

(

1 +
R̃W

L ΦW
L (y)

ΦL(y)

))

+ K

)

where R̃W
L is the sum of of the resistors of any set formed by all but K φ-free edges of L.

4

Proof of Theorem 3 [sketch]. Recall that RW
0 is the sum of resistors on all spurious φ-free edges

obtained by eliminating pairs of φ-edges in L′. Hence, we can injectively associate with each such
edge two distinct φ-edges in L′, and therefore the total number of spurious edges giving contribution
to RW

0 is bounded by ΦL′(y)/2, which in turn can be bounded by ΦT (y) via Lemma 2. Applying
Lemma 4 (setting R̃W

L to RW
L − RW

0) along with Lemma 2 concludes the proof. !

6 The Weighted Tree Algorithm on weighted graphs
In order to solve the more general problem of predicting the labels of a weighted graph G, one can
first generate a spanning tree T of G and then run WTA directly on T . In this case it is possible to
rephrase Theorem 3 in terms of properties ofG. Note that for each spanning tree T ofG, ΦW

T (y) ≤
ΦW

G (y) and ΦT (y) ≤ ΦG(y). Specific choices of the spanning tree T control in different ways
the quantities in the mistake bound of Theorem 3. For example, a minimum spanning tree tends to
reduce the value ofRW

T , betting on the fact that φ-edges are light. Adapting the proof of Theorem 3,
we can prove the following result.

Theorem 5 If WTA is run on a random spanning tree T of a labeled weighted graph (G, y) with n
nodes, then the total number mG of mistakes statisfies

E mG = O

(

E
[
ΦT (y)

]
(

1 + log

(

1 + n
wφ

max

w¬φ
min

)))

where w¬φ
min = min(i,j)∈E\Eφ wi,j and wφ

max = max(i,j)∈Eφ wi,j . In particular, if the ratio
max(i,j),(k,")∈E wi,j

/
wk," is bounded by a polynomial in n, then E mG = O

(
E[ΦT (y)] log n

)
.

Note that having K φ-free edges with exponentially small (in n) weights does not necessarily lead
to a vacuous bound in Theorem 5 when K is small enough. Indeed, one can use Lemma 4 also
to replace the factor w¬φ

min by the (K + 1)-th smallest φ-free weight at the cost of adding just K
more mistakes. On the other hand, if G has exponentially large φ-edge weights, then the bound can
indeed become vacuous. This is not surprising, though, since the algorithm’s inductive bias is to bet
on graphs having small weighted cutsize.

7 Computational complexity
A direct implementation of WTA operating on a tree T with n nodes would require running time
O(n log n) over the n prediction trials, and linear memory space. We now sketch how to implement
WTA in O(n) time, i.e., in constant amortized time per trial.

Once the given tree T is linearized into an n-node line L, we initially traverse L from left to right.
Call j0 the left-most terminal node of L. During this traversal, the resistance distance d(j0, i) is
incrementally computed for each node i in L. This makes it possible to calculate in constant time
d(i, j) for any pair of nodes, since d(i, j) = |d(j0, i) − d(j0, j)| ∀i, j ∈ L. On top of line L a
complete binary tree T ′ is constructed having 2%log2 n& leaves.2 The k-th leftmost leaf (in the usual
tree representation) of T ′ is the k-th node in L (numbering the nodes of L from left to right). The
algorithm maintains this data-structure in such a way that at time t: (i) the subsequence of leaves
whose labels are revealed at time t are connected through a (bidirectional) list B, and (ii) all the
ancestors in T ′ of the leaves of B are marked. See Figure 1 for an example.

When WTA is required to predict the label yit
, the algorithm looks for the two closest leaves i′ and

i′′ oppositely located in L with respect to it. The above data-structure supports this operation as
follows. WTA starts from it and goes upwards in T ′ until the first marked ancestor anc(it) of it is
reached. During this upward traversal, the algorithm marks each internal node of T ′ on the path
connecting it to anc(it). Then, WTA starts from anc(it) and goes downwards in order to find the
leaf i′ ∈ B closest to it. Notice how the algorithm uses node marks for finding its way down: For
instance, in Figure 1 the algorithm goes left since anc(it) was reached from below through the right
child node, and then keeps right all the way down to i′. Node i′′ (if present) is then identified via the
links in B. The two distances d(it, i′) and d(it, i′′) are compared, and the closest node to it within
B is then determined. Finally, WTA updates the links of B by inserting it between i′ and i′′.

2For simplicity, this description assumes n is a power of 2. If this is not the case, we could add dummy
nodes to L before building T

′.

5

Figure 1: Constant amortized-time implementation of
WTA. The line L is made up of n = 16 nodes (the
adjacent boxes at the bottom). Shaded boxes are the
revealed nodes, connected through a dark grey doubly-
linked list B. The depicted tree T ′ has both unmarked
(white) and marked (shaded) nodes. The arrows indi-
cate the traversal operations performed by WTA when
predicting the label of node it: The upwards traversal
stops as soon as a marked ancestor anc(it) is found, and
then a downward traversal begins. Notice that WTA first
descends to the left, and then keeps going right all the
way down. Once i′ is determined, a single step within
B suffices to determine i′′.

In order to quantify the amortized time per trial, the key observation is that each internal node k of
T ′ gets visited only twice during upward traversals over the n trials: The first visit takes place when
k gets marked for the first time, the second visit of k occurs when a subsequent upwards visit also
marks the other (unmarked) child of k. Once both of k’s children are marked, we are guaranteed
that no further upwards visits to k will be performed. Since the preprocessing operations takeO(n),
the above shows that the total running time over the n trials is linear in n, as anticipated.3

8 Preliminary experiments

We now present the results of a preliminary experimental comparison on two real-world weighted
graph datasets. Our goal is to compare the prediction accuracy of WTA to the one achieved by fast
algorithms for weighted graphs (and for which accuracy performance guarantees are available in the
literature). We compare our algorithm to the following two online prediction methods, intended as
representatives of two different ways of facing the graph prediction problem, a global approach and
a local approach.

The Perceptron algorithm with graph Laplacian kernel [10] (abbreviated as GPA, Graph Percep-
tron Algorithm). This algorithm predicts the nodes of a weighted graph G = (V, E) after mapping
V via the linear kernel based on L+

G + 11
', where LG is the laplacian matrix of G. As recently

shown in [12], computing the pseudoinverseL+
G whenG is a tree takes quadratic time in the number

of nodes n. This can be exploited by generating a spanning tree T of G, and then invoking GPA on
T . Both time and space are quadratic in n (rather than linear, as for WTA). The mistake bound on T
has the formmT ≤ ΦW

T (y)DW
T , whereDW

T is the spanning tree diameter. GPA is a global approach
in the sense that the graph topology affects, via the inverse Laplacian, the prediction on all nodes.

The Online Majority Vote algorithm (abbreviated as OMV). As the common underlying assump-
tion to graph prediction algorithms is that nearby nodes are labeled similarly, a very intuitive and
fast algorithm for predicting the label of a node it is via a weighted majority vote on all labels of
the adjacent nodes seen so far, i.e., SGN(

∑
j<t : (it,ij)∈E yij

wit,ij
). The total time required, as well

as the memory space, is Θ(|E|), since we need to read (at least once) the weights of all edges.
OMV-like algorithms are local approaches, in the sense that prediction at one node is affected only
by adjacent nodes.

It is fair to stress that many other algorithms have been proposedwhich are able to deal with weighted
graphs, including the label-consistent mincut approach of [3] and the energy minimization methods
in [2, 20]. We do not carry out a direct experimental comparison to them either because (seemingly)
they do not have good scaling properties or because they do not have online prediction performance
guarantees. We combine WTA and4 GPA with spanning trees generated in different ways.

Random Spanning Tree (abbreviated as RST). Each spanning tree is taken with probability propor-
tional to the product of its edge weights (e.g., [15, Ch. 4]).

3Notice, however, that the worst-case time per trial is O(log n). For instance, on the very first trial T ′ has
to be traversed all the way up and down.

4Note that OMV-like algorithms do not operate on spanning trees.

6

Depth first spanning tree (DFST). The spanning tree is created with a randomized depth-first visit
in the following way: A root is randomly selected; then each newly visited node is chosen with
probability proportional to the weights of the edges connecting the current vertex with the adjacent
nodes that have not been visited yet. This spanning tree generation is intended to approximate the
standard RST generation which in practice might be more time-consuming.

Minimum Spanning Tree (MST), i.e., the spanning tree minimizing the sum of the resistors of all
edges. MST is the tree whose Laplacian best approximates the Laplacian ofG according to the trace
norm criterion (see, e.g., [12]).

Shortest Path Spanning Tree (SPST). In [12], the shortest path tree is used for its small diameter,
which is always at most twice the diameter of G. A short diameter tree allows for a better control
over the (theoretical) performance of GPA. By varying the root node, we generated n shortest path
spanning tree, and then took the one having minimal diameter among them.

We ran our experiments on two medium size biological datasets: (1) Krogan et al.’s dataset [14, 6]
(abbreviated as Krogan); (2) A second dataset (abbreviated as Comb) resulting from a combina-
tion [6] of three datasets from [7, 13, 18].

Both Krogan and Comb represent high-throughput protein-protein interaction networks of budding
yeast taken from [6]. In particular, Krogan is a weighted graph based on a large high-throughput and
reliable dataset reported in [14]; Comb is the combination of three high-throughput yeast interaction
sets from [7, 18, 13]. We only consider the biggest connected components of both datasets, obtaining
2,169 nodes and 6,102 edges for Krogan, and 2,871 nodes and 6,407 edges for Comb. In these
graphs, each node belongs to one or more classes, each class representing a protein function. We
selected the set of functional labels at depth one in the FunCat classification scheme of the MIPS
database [16], resulting in 17 classes per dataset. We finally binarized the problems via a standard
one-vs-rest scheme, obtaining 17 + 17 = 34 binary classification problems.

The experimental setup on the 34 binary classification problems is the following: (i) We first gener-
ated 50 random permutations of the node indices for each dataset; (ii) we computed MST and SPST
for each graph and made (for both WTA and GPA) one run per permutation on each binary prob-
lem, averaging results over permutations; (iii) we generated 50 RST and 50 DFST for each graph,
and operated as in (ii) with a further averaging over the randomness in the tree generation; (iv) we
ran 50 experiments (one per permutation) for each binary problem with OMV, again averaging over
permutations.

In order to analyze the labeling properties of each binary problem, we calculated the percentage of φ-
edges in the graphs, as well as in each type of spanning tree used in our experiments. These statistics
are reported in the table below. Figures for RST and DFST are averaged over random generation of
spanning trees. In particular, those concerning RST estimate the edge density-independent measure
E ΦT (y)/(n − 1) mentioned in Section 2.

Original RST DFST SPST MST
Percentage φ-edges Krogan 17.62 18.73 18.57 19.33 18.08
Percentage φ-edges Comb 19.14 31.58 31.66 20.25 19.58

This table shows that the average fraction of φ-edges in MST is always smaller than those of the
other spanning trees. Since MST is made up of edges with large weight, this suggests that in the
considered datesets the heaviest edges are likely to be φ-free, as one is expecting.
In the next table we give the fraction of predictionmistakes achieved by the various algorithms on the
two datasets. The results for OMV are omitted, since they tend to perform poorly on our biological
graphs which are rather sparse. Hence, we selected the best three spanning tree performers for WTA,
and the best three spanning tree performers for GPA. For simplicity of presentation, the results are
averaged over the 17 binary classification problems, In bold are the best accuracy on each dataset.
Standard deviations are in braces (these are further averaged over the 17 classes).

Dataset WTA+MST WTA+DFST WTA+RST GPA+MST GPA+SPST GPA+RST
Krogan 18.69 (± 0.59) 18.53 (± 0.65) 18.90 (± 0.69) 20.94 (± 0.48) 19.82 (± 0.47) 21.53 (± 0.55)
Comb 19.82 (± 0.56) 19.82 (± 0.62) 19.94 (± 0.60) 20.90 (± 0.40) 21.52 (± 0.41) 22.11 (± 0.49)

The experiments show that our algorithm outperforms GPA and OMV on both datasets. In particular,
thoughwe only reported aggregated results, the same relative performance pattern among the various

7

algorithms repeats sistematically over all 17 binary problems. In addition, WTA runs significantly
faster than its competitors, and is also fairly easy to implement. The combination WTA+MST tends
to perform best. This might be explained by the fact that MST tends to select light φ-edges of the
original graph. As a matter of fact, our results also show that WTA can achieve good accuracy results
even when combined with DFST, though the use of this kind of spanning tree does not provide the
same theoretical performance guarantees as RST. Hence, in practice, DFST might be viewed as a fast
and practical way to generate spanning trees for WTA.

9 Work in progress
The above experiments have only been performed on medium-size sparse graphs, and should there-
fore be considered preliminary in nature. We are now running extensive experiments with further
datasets with both sparse and dense graphs. We expect to be able to report them at the workshop. In
addition, we are also running experiments with RST by disregarding the edge weights at generation
time, and then re-assigning them at the end of the tree generation phase. As shown in [19, 1], it is
possible to generate this kind of spanning tree in time linear in n for many and important classes of
unweighted graphs. The preliminary experiments we conducted suggest that WTA is able to achieve
very similar performances as the ones of standard RST. Observe that the resulting algorithm has a
total time (including the generation of spanning tree) which is linear in the number n of nodes of
(most) graphs.

References
[1] N. Alon, C. Avin, M. Koucky, G. Kozma, Z. Lotker and M.R. Tuttle. Many random walks are faster than

one. In Proc. 20th SPAA, 2008.
[2] M. Belkin, I. Matveeva, and P. Niyogi. Regularization and semi-supervised learning on large graphs. In

Proc. 17th COLT, 2004.
[3] A. Blum and S. Chawla. Learning from labeled and unlabeled data using graph mincuts. In Proc. 18th

ICML, 2001.
[4] N. Cesa-Bianchi, C. Gentile, F. Vitale. Fast and optimal prediction of a labeled tree. In Proc. 22nd COLT,

2009.
[5] H. Chang, and D.Y. Yeung. Graph laplacian kernels for object classification from a single example. CVPR

(2), 2011–2016, 2006.
[6] G. Pandey, M. Steinbach, R. Gupta, T. Garg, and V. Kumar. Association analysis-based transformations

for protein interaction networks: a function prediction case study. In Proc. 13th ACM SIGKDD, 2007.
[7] A.-C. Gavin et al. Functional organization of the yeast proteome by systematic analysis of protein com-

plexes. Nature, 415(6868):141-147, 2002.
[8] A. Goldberg, and X. Zhu. Seeing stars when there arent many stars: Graph-based semi-supervised learning

for sentiment categorization. HLT-NAACL 2006 Workshop on Textgraphs: Graph-based algorithms for
Natural Language Processing, 2004.

[9] N. Goyal, L. Rademacher, and S. Vempala. Expanders via random spanning trees. In Proc. 19th SODA,
2009.

[10] M. Herbster and M. Pontil. Prediction on a graph with the Perceptron. In NIPS 19, 2007.
[11] M. Herbster, G. Lever, and M. Pontil. Online prediction on large diameter graphs. In NIPS 22, 2009.
[12] M. Herbster, M. Pontil, and S. Rojas-Galeano. Fast prediction on a tree. In NIPS 22, 2009.
[13] T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki. A comprehensive two-hybrid analysis

to explore the yeast protein interactome. PNAS, 98(8):4569-4574, 2001.
[14] N.J. Krogan et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. In

Nature, 440:637-643, 2006.
[15] R. Lyons and Y. Peres. Probability on Trees and Networks. Manuscript, 2009.
[16] A. Ruepp et al. The FunCat, a functional annotation scheme for systematic classification of proteins from

whole genomes. Nucleic Acids Research, 32(18):5539-5545, 2004.
[17] H. Shin, K. Tsuda, and B. Schölkopf. Protein functional class prediction with a combined graph. Expert

Systems with Applications, 36:3284–3292, 2009.
[18] P. Uetz et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae.

Nature, 403(6770):623-627, 2000.
[19] D.B. Wilson. Generating random spanning trees more quickly than the cover time. In Proc. 28th STOC,

1996.
[20] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using Gaussian fields and harmonic

functions. In ICML Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning
and Data Mining, 2003.

8

