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Abstract

We consider the problem of clustering a finite set of items from pairwise similarity information.
Unlike what is done in the literature on this subject, we do so in a passive learning setting,
and with no specific constraints on the cluster shapes other than their size. We investigate the
problem in different settings: i. an online setting, where we provide a tight characterization
of the prediction complexity in the mistake bound model, and ii. a standard stochastic batch
setting, where we give tight upper and lower bounds on the achievable generalization error.
Prediction performance is measured both in terms of the ability to recover the similarity
function encoding the hidden clustering and in terms of how well we classify each item
within the set. The proposed algorithms are time efficient.

1. Introduction

In the problem of clustering through pairwise similarity, we have a finite set V of items
that have to be suitably clustered into groups by means of information about the simi-
larity/dissimilarity between pairs of such items. This information may come from diverse
sources, depending on the specific application. For instance, in the well-known Entity Reso-
lution problem, the goal is to identify and group together records, possibly from different
data sources, that refer to the same entity and/or individual, e.g., different pictures of the
same person, different ways of addressing the same author of a scientific paper, different
names of the same organization, different accounts of the same user of a recommendation
service, etc. In these and many other examples of Entity Resolution, one often leverages
attributes associated with these entities and, by comparing these attributes, determine very
likely matches and mismatches between pairs of entities.

Another related application is community detection in Social Networks, where we
naturally view V as the nodes of an edge-signed graph, and we are allowed to observe the
sign of some edges carrying information about whether some pairs of nodes/individuals
belong to the same community (i.e., they are “similar”) or not (they are “dissimilar”).
Coarsely speaking, the problem is then trying to reconstruct the communities based on the
observed relationships and, as a byproduct, inferring the sign of new pairwise relationships.
Yet, this inference process is clearly prone to errors, for we do not observe all possible
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pairwise relationships over V . Moreover, small-world phenomena have to be taken into duly
account, since this is a typical scenario where the clusters are strongly unbalanced in size,
and we would like to be able to take advantage of this pattern as well.

In this paper, we consider the task of building a clustering of a finite set of items V from
pairwise similarity/dissimilarity information. This information is assumed to be consistent
with an unknown clustering D = {D1, . . . , Dk} that we want to reconstruct. We measure
the reconstruction error in different ways, depending on whether our algorithms output after
training a clustering C or merely similarity relationship Y (which need not be transitive). In
the former case, our metric will be the misclassification error between C and D, which is
essentially the number of items in the learner’s output clustering C that are misclassified,
as compared to the ground truth D. In the latter case, our reconstruction error will be
the Hamming (distance) error between Y and D (D being viewed as a transitive similarity
relationship over V ), which is essentially the number of item pairs labeled by ground truth
D that are misclassified by C. We investigate two learning settings, an online setting in the
mistake bound model (Littlestone, 1987), and a batch stochastic setting with train/test split.
In the online setting, we deliver a tight characterization of the predictive complexity of the
problem when we have no specific constraints on the cluster shapes other than their size and
their number. We give upper and lower mistake bounds, the upper bound being achieved by
a novel and efficient algorithm whose predictive bias is towards the existence of few large
clusters and many small ones (just as in the above mentioned community detection scenario).
By means of standard online-to-batch conversions, these upper bounds can immediately
be turned to generalization error bounds holding in a batch stochastic setting w.r.t. the
Hamming error. Yet, our focus in batch stochastic settings is on misclassification error,
rather than Hamming error. Assuming randomly drawn training pairs, we prove tight
upper and lower bounds on the achievable misclassification error on unseen pairs, the bridge
between the two settings being established by a novel reduction turning small Hamming
error into small misclassification error.

Related work. The problem we are considering here can be seen as an instance of matrix
& metric learning through noise-free labels. The field includes a fair amount of work, hence
we can hardly do it justice here. We now outline some of the main contributions in matrix
& metric learning, with an emphasis on those we believe are mostly related to the current
paper. Relevant work in matrix learning, specifically in online settings, includes Tsuda et al.
(2005); Warmuth (2007); Cavallanti et al. (2010); Kakade et al. (2012); Hazan et al. (2012);
Gentile et al. (2013). In all these works, a major effort is devoted to designing appropriate
regularization methods to drive the online optimization process and/or to incorporate
available side information, spectral sparseness being of special concern. Yet, the resulting
algorithms appear to be too general to deliver tight bounds for the special problem we are
considering here and, moreover, their scaling properties make them unfit to practical usage
for large problem instances. Metric learning is the special case of matrix learning where
the matrix to be learned is positive semi-definite. Representative works include Xing et al.
(2002); Shalev-Shwartz et al. (2004); Maurer (2008); Cao et al. (2016). In particular, Cao
et al. (2016) work out generalization bounds based on a Rademacher complexity analysis
which is again too general to deliver tight bounds for our specific problem; besides, they
essentially consider only a Hamming distance-like error. In short, what distinguishes our
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work from the above previous work is that we produce not just similarity functions, but
instead construct clusterings with an associated tight misclassification error analysis.

The so-called matrix completion task is also related to our work (see, e.g., Koltchinskii
et al. (2016) for a representative work, as well as references therein). Yet, the typical goal
there is to come up with matrix recovery methods whose error rates are again measured
through a Hamming distance-like error (i.e., the Frobenious norm distance), with no specific
concerns in clustering.

Closer in spirit to our work is the general line of research on semi-supervised cluster-
ing/clustering with side information, where the must-link/cannot-link constraints can be seen
as similarity feedback. Known references, mostly application-oriented, include Ben-Dor et al.
(1999); Demiriz et al. (1999); Basu et al. (2004); Kulis et al. (2009), the formal statements
therein being fairly different from ours. Somewhat closer to our paper from the formal
standpoint within semi-supervised clustering is the thread on interactive clustering/clustering
with queries. Here, the learner is allowed to interactively ask for feedback in the form of
suitable queries, e.g., split and merge queries (Balcan and Blum, 2008; Awasthi et al., 2017),
and similarity/same-cluster queries (Davidson et al., 2014; Ashtiani et al., 2016; Mazumdar
and Saha, 2017a,b). Unlike our paper, in many of these works, the goal is to achieve exact,
rather than approximate, reconstruction of the ground-truth clustering by asking as few
queries as possible. As a sample of the available results in this literature, in the interactive
feedback paper of Balcan and Blum (2008), the authors focus on clusters having specific
shapes, that is, coming from a specific collection B of subsets of V . They show that the
number of queries that suffice is either constant or logarithmic in n, but is also dependent
on the “descriptional” complexity of B, e.g., if V is a set of n points on the real line and B
is the set of intervals, then k log n queries suffice; more generally, O(k3 log |B|) queries are
enough when computationally inefficient algorithms are also considered. Yet, generalizing
their argument to clusters of arbitrary shapes (i.e., B = 2V ), as we have them here, easily
leads in general to the trivial bound of O(n) queries. Davidson et al. (2014) show that
Θ(k n) similarity queries are both necessary and sufficient to achieve exact reconstruction,
the lower bound holding specifically in the case of (almost) equally-sized clusters. Yet, unlike
our paper, they work in an active learning setting. Still in the active setting, Mazumdar
and Saha (2017a,b) consider ways to sharpen the above bound by means of further side
information available to the learner beyond queries. Their results are generally incomparable
to ours, for besides dealing with active learning and exact reconstruction, they also allow for
similarity labels to be noisy.

Finally, correlation clustering (Bansal et al., 2004) is also similar in flavor to some of
our results. In correlation clustering, a similarity relationship Y on item pairs is given, and
the goal is to find a clustering C which minimizes the Hamming error between Y and C.
The problem, as stated, is NP-hard, and a number of approximation algorithms exist (e.g.,
Bansal et al. (2004); Demaine et al. (2006)). Although inspired by these results as well,
our focus here is slightly different: we seek to provide efficient algorithms that compute a
clustering with associated predictive performance guarantees.

2. Preliminaries and Notation

We now introduce our main notation along with basic preliminaries. Given a finite set
V = {1, . . . , n}, a clustering D over V is a partition of V into sets D = {D1, . . . , Dk}. Each
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Dj is called a cluster. A similarity graph G = (V,P) over V is an undirected (but not
necessarily connected) graph where, for each pairing (v, w) ∈ V 2, v and w are similar if
(v, w) ∈ P , and dissimilar, otherwise. Notice that the similarity relationship so defined need
not be transitive. We shall interchangeably represent a similarity graph over V through a
binary n× n similarity matrix Y = [yv,w]n×nv,w=1 whose entry yv,w is 1 if items v and w are
similar, and yv,w = 0, otherwise. A clustering D over V can be naturally associated with
a similarity graph G = (V,PD) whose edge set PD is defined as follows: given v, w ∈ V ,
then (v, w) ∈ PD if and only if there exists a cluster D ∈ D with v, w ∈ D. In words, G is
made up of k disjoint cliques. It is only in this case that the similarity relationship defined
through G is transitive. Matrix Y represents a clustering if, after permutation of rows and
columns, it ends up being block-diagonal, where the i-th block is a di × di matrix of ones, di
being the size of the i-th cluster. Given clustering D, we find it convenient to define a map
µD : V → {1, . . . , k} in such a way that for all v ∈ V we have v ∈ DµD(v). In words, µD is a
class assignment mapping, so that v and w are similar w.r.t. D if and only if µD(v) = µD(w).

Given two similarity graphs G = (V,P) and G′ = (V,P ′), the Hamming (distance) error
between G and G′, denoted here as HA(P,P ′), is defined as

HA(P,P ′) =
∣∣{(v, w) ∈ V 2 : (v, w) ∈ P ∧ (v, w) /∈ P ′ ∨ (v, w) /∈ P ∧ (v, w) ∈ P ′}

∣∣ ,
where |A| is the cardinality of set A. The same definition applies in particular to the case
when either G or G′ (or both) represent clusterings over V . By abuse of notation, if D is
a clustering and G = (V,P) is a similarity graph, we will often write HA(D,P) to denote
HA(PD,P), where (V,PD) is the similarity graph associated with D, so that HA(PD,D) = 0.
Moreover, if the similarity graphs G and G′ are represented by similarity matrices, we may
equivalently write HA(Y, Y ′), HA(Y,D), and so on. The quantity HA(, ) is very closely
related to the so-called Mirkin metric (Mirkin, 1996) over clusterings, as well as to the
(complement of the) Rand index (Rand, 1971), see, e.g., Meila (2012).

Another “distance” that applies specifically to clusterings is the misclassification error dis-
tance, denoted here as ER(, ), and defined as follows. Given two clusterings C = {C1, . . . , C`}
and D = {D1, . . . , Dk} over V , repeatedly add the empty set to the smaller of the two so as
to obtain ` = k. Then

ER(C,D) = min
f

∑
D∈D
|D \ f(D)| ,

the minimum being over all bijections from D to C. In words, ER(C,D) measures the smallest
number of classification mistakes over all class assignments of clusters in D w.r.t. clusters in
C. This is basically an unnormalized version of the classification error (distance) considered,
e.g., in Meila (2007). An illustrative example to gain intuition on the ER metric is the
following: Suppose V = {1, 2, 3, 4, 5, 6}, and we have clusterings C = {{1, 2, 3}, {4, 5}, {6}}
and D = {{1, 2}, {3, 4}, {5}, {6}}. In order to turn C into D, we operate on C by moving
item 3 from the first cluster {1, 2, 3} to the second cluster {4, 5}, and item 5 from the second
cluster {4, 5} to a new cluster. Since this is the minimal number of moves we need to make,
we have ER(C,D) = 2.

Finally, the (Jaccard) distance dist(A,B) between sets A and B, with A,B ⊆ V is
defined as

dist(A,B) =
|A \B|+ |B \A|

|A ∪B|
.
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Recall that dist(, ) is a proper metric on the collection of all finite sets. Moreover, observe
that dist(A,B) = 1 if and only if A and B are disjoint.

2.1 Learning settings

We are interested in predicting similarities and/or computing clusterings over V = {1, . . . , n}
based on binary similarity/dissimilarity information contained in a similarity matrix Y ,
whose entries are only partially observed. In particular, we are given a training set S of m
binary-labeled pairs 〈(v, w), yv,w〉 ∈ V 2 × {0, 1}, drawn uniformly at random1 from V 2, and
our goal is to either build a clustering C over V so as to achieve small misclassification error
ER(C, Y ), or a similarity prediction model (that is, an estimated similarity matrix) Ŷ so
as to achieve small Hamming error HA(Ŷ , Y ). In both cases, the error is computed on the
whole matrix Y (clearly enough, this is sensible only when m is significantly smaller than n2).
The similarity matrix Y will always be consistent with a given unknown clustering D over
V . Notice that the number of clusters k will also be unknown to the prediction/clustering
algorithms. Hence, if the goal is to simply predict similarities over V , the error of our
inference procedures will be measured through HA. On the other hand, if our final goal is
not to merely predict similarities, but to produce a clustering over V then our error will be
measured through ER. In fact, we shall do the above in different ways, corresponding to the
content of the next three sections:

1. By investigating the problem of online prediction of pairwise similarities in the standard
mistake bound model of online learning (Littlestone, 1987). Using a simple online-to-
batch conversion, we will make the online algorithm compute a similarity prediction
model Ŷ for the unseen entries of Y . Since Ŷ itself is not guaranteed to be a clustering
over V , error in this case will be measured through HA(Ŷ , Y ).

2. By an indirect approach that exhibits a (tight) reduction from similarity prediction
methods measured through HA (like those coming from Item 1 above) to clustering
methods measured through ER. The machinery developed in Item 1 may thus be a
possible input to this reduction.

3. Through a direct approach, by presenting a specific baseline algorithm whose goal is
to build a clustering C over V based on a training set S drawn at random, and the
discrepancy between C and D will be measured through ER(C,D).

3. Online Similarity Prediction

In this section, we consider similarity prediction in the online mistake bound model, where
an example sequence S = 〈(v1, w1), yv1,w1〉, . . . , 〈(vm, wm), yvm,wm〉 is revealed incrementally
in rounds. In the t-th round the algorithm is compelled to predict the similarity label yvt,wt ∈
{0, 1}, given the previous t− 1 examples 〈(v1, w1), yv1,w1〉, . . . , 〈(vt−1, wt−1), yvt−1,wt−1〉, and
(vt, wt). Denote by ŷt ∈ {0, 1} the prediction issued by the algorithm in round t. After
prediction, the true label yt = yvt,wt is revealed, and we say that the algorithm has
made a prediction mistake if ŷt 6= yt. The aim is to minimize the number of mistaken

1. For simplicity of presentation, we will assume throughout that, when drawn at random from V , the
samples in S are drawn with replacement.

5



Pasteris et al.

Algorithm 1 Folk online clustering algorithm.

Input: Item set V = {1, . . . , n}.
Initialization:

• C = {{v} : v ∈ V }; // Let Cv denote the cluster containing v.

For t = 1, . . . ,m:

1. Get pair (vt, wt) ∈ V 2;

2. If Cvt = Cwt then ŷt = 1, else ŷt = 0:

3. Observe yt := yvt,wt ; if ŷt 6= yt then C ← C \ Cw and Cv ← Cv ∪ Cw ;

Output: Clustering C .

predictions on any example sequence S. Sequence S can be generated by an adaptive
adversary, but the labels yvt,wt are assumed to be consistent with an underlying clustering
D = {D1, D2, . . . , Dk} over V , with cluster sizes d1, d2, . . . , dk. Throughout, we assume
w.l.o.g. that d1 ≤ d2 ≤ . . . ≤ dk.

This problem has been studied before, and can be cast as a special case of online
matrix/metric learning (e.g., Shalev-Shwartz et al. (2004); Tsuda et al. (2005); Warmuth
(2007); Cavallanti et al. (2010); Kakade et al. (2012); Hazan et al. (2012); Gentile et al.
(2013)). Yet, a direct application of techniques available from those papers would give rise
to suboptimal results in terms of both mistake bound and running time. For instance, we
may use the adaptation of the Matrix Winnow algorithm (Warmuth, 2007) from Gentile
et al. (2013), that provides a mistake bound of the form |ΦG|

(
maxv,w∈V R

G
v,w

)
log n, where

|ΦG| is the cutsize determined by a graph G over V , and the RGv,w are the corresponding
effective resistance factors. If G therein is the complete graph2 then it is easy to see that
|ΦG| =

∑k
i=1 di(n− di) = n2−

∑k
i=1 d

2
i , and all effective resistance factors RGv,w are 2/n. Up

to multiplicative constants, this results in a mistake bound of the form(
n− 1

n

k∑
i=1

d2
i

)
log n . (1)

Moreover, the running time per round of this algorithm is O(n3), since it requires to maintain
and update at every round the SVD of a n× n matrix.

An even simpler baseline (belonging to folklore) – see pseudocode in Algorithm 1 – is
one where the algorithm maintains on the fly a spanning forest over V (i.e., a collection of
disjoint trees covering V , each tree being a cluster), and at round t the algorithm predicts
1–“similar” on (vt, wt) if vt and wt belong to the same tree, and 0–“dissimilar”, otherwise.
If the actual label yvt,wt is 1 and the algorithm is mistaken, then the two nodes vt and wt
get connected by an edge, thereby merging two trees of the current forest into a bigger tree.
It is easy to argue that if we start off from the degenerate forest made up of n singletons (as
in Algorithm 1), this algorithm makes at most n− k mistakes. Thus this algorithm has a
predictive bias towards many “small” clusters.

Given the above state of affairs, a natural question is what is the optimal mistake bound
for the problem of online learning k clusters of sizes d1 ≤ d2 ≤ . . . ≤ dk over V = {1, . . . , n}

2. This choice of G seems best in the absence of further information.
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through pairwise similarity labels. In the rest of this section, we describe and analyze the
time-efficient algorithm Oppa (Online Pairwise Prediction Algorithm) which incorporates a
different predictive bias than the folklore algorithm mentioned above. We then complement
our analysis by showing through a lower bounding argument that no online algorithm can
do better in terms of mistake bounds up to constant factors, thereby showing that Oppa is
essentially optimal.

Oppa is described in Algorithm 2. Whereas the folklore algorithm is predictively biased
to the case of many small clusters (large k). Oppa is predictively biased to the case of few
large “majority” clusters (implying a large dk). Thus the algorithms incorporate distinct
predictive biases which are indirectly in opposition. In common with the folklore algorithm
we maintain a clustering C, and we predict consistently so that when two points are known
to be in the same cluster we predict “similar.” However, unlike the folklore algorithm if we
do not know the two points to be “similar” we do not necessarily predict “dissimilar”, in fact
if it is the first time we have encountered both points we predict “similar.” Intuitively this
follows from the different predictive biases, as e.g., if we make a mistake on two novel points
we now know the cardinality dk of the majority cluster is reduced by one. Oppa maintains
both a clustering C and a tag in {∅, A,B} for each cluster C ∈ C, the tags controlling both
prediction and updates, as seen in Algorithm 2. The tagging through an amortized analysis
(see proof of Theorem 1) enables one to prove that the potential cardinality of the majority
cluster is reduced by one every five mistakes. Both the folklore algorithm and Oppa can
be implemented with a standard disjoint set data-structure ensuring a cumulative time
complexity for m predictions of O((n+m) log∗ n) for both algorithms.

We have the following result.3

Theorem 1 Let D = {D1, . . . , Dk} be any clustering of V = {1, . . . , n}, with di = |Di|,
i = 1, . . . , k, and d1 ≤ d2 ≤ . . . dk. Then for any sequence of examples S labeled according to
D, the number of mistakes made by Oppa on S is upper bounded by 5(n− dk) .

It is useful to contrast the upper bound for Oppa in Theorem 1 to the bound for Matrix

Winnow in (1). Since
∑k

i=1 d
2
i ≤

(∑k
i=1 di

)
(maxi=1...k di) = ndk, one can readily see that (1)

is weaker than Theorem 1 by at least a logarithmic factor. On the other hand, the latter
is again generally incomparable to the folklore bound n − k. By constrast, the following
(almost matching) lower bound holds.

Theorem 2 Let D = {D1, . . . , Dk} be any clustering of V = {1, . . . , n}, with di = |Di|,
i = 1, . . . , k, and d1 ≤ d2 ≤ . . . dk. Then, for any online similarity prediction algorithm A, a
sequence of examples S exists which is labeled according to D, and such that the number of
mistakes made by A on S is at least n− k − dk .

Theorems 1 and 2 combined together provide a reasonably tight characterization of the
complexity of online learning clusterings through pairwise similarity labels.

Randomly drawn sequences. Suppose now that the training sequence S is drawn
uniformly at random. According to a standard online-to-batch conversion (Helmbold and

3. All proofs are given in the appendix.
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Algorithm 2 The Online Pairwise Prediction Algorithm ( Oppa ).

Input: Set V = {1, . . . , n}.
Initialization:

• C = {{v} : v ∈ V }; // Let Cv denote the cluster containing v.

• For any v ∈ V , set tag ω(Cv)← ∅.

For t = 1, . . . ,m:

1. Get pair (vt, wt) ∈ V 2;

2. If Cvt = Cwt then ŷt = 1; //predict "similar"

3. Else define ζ as the pair of tags (ω(Cvt), ω(Cwt)); then predict as in the table (second
column) and, upon observing yt, if ŷt 6= yt update as in the table (third column):

Value of ζ Prediction On mistake execute:

(∅, ∅) Similar (ŷt = 1) ζ ← (A,A)

(∅, A) Similar (ŷt = 1) ζ ← (A,B)

(A, ∅) Similar (ŷt = 1) ζ ← (B,A)

(∅, B) Dissimilar (ŷt = 0) C ← MERGEA(C, Cvt , Cwt)

(B, ∅) Dissimilar (ŷt = 0) C ← MERGEA(C, Cvt , Cwt)

(A,B) Dissimilar (ŷt = 0) C ← MERGEA(C, Cvt , Cwt)

(B,A) Dissimilar (ŷt = 0) C ← MERGEA(C, Cvt , Cwt)

(A,A) Dissimilar (ŷt = 0) C ← MERGEA(C, Cvt , Cwt)

(B,B) Dissimilar (ŷt = 0) C ← MERGEB(C, Cvt , Cwt)

Algorithm 3 The MERGEA(, , )/MERGEB(, , ) subroutine.

Input: Clustering C, clusters C,C ′ ∈ C.
1. Set C∗ → C ∪ C ′;
2. Set C ← (C \ {C,C ′}) ∪ {C∗};
3. If operation is MERGEA(C, C, C ′) set ω(C∗)← A;

4. If operation is MERGEB(C, C, C ′) set ω(C∗)← B;

Output: Clustering C, tagging ω(·).

Warmuth, 1995), one can pick at random one of the m similarity prediction models4 produced
by Oppa during its online functioning, call this model ŶS , and have a guarantee that the
probability of making a mistake on an unseen pair (v, w) drawn again uniformly at random
is O(n−dkm ). The probability also takes into account the random draw of S and the random
draw of the model within the sequence of m models. Then, recalling the definition of HA(, )
from Section 2, the upper bound in Theorem 1 immediately entails the following.

4. Unlike the folklore algorithm, Oppa is not guaranteed to deliver after training a prediction function
which is itself a clustering over V .

8



On Similarity Prediction and Pairwise Clustering

Algorithm 4 The Robust Greedy Clustering Algorithm

Input: Similarity graph (V,P); distance parameter a ∈ [0, 1].

1. For all v ∈ V , set Γ(v)← {v} ∪ {w ∈ V : (v, w) ∈ P};

2. Construction of graph (V,Q): //First stage

For all v, w ∈ V with v 6= w:
If dist (Γ(v),Γ(w)) ≤ 1− a then (i, j) ∈ Q, otherwise (i, j) /∈ Q;

3. Set A1 ← V , and t← 1; //Second stage

4. While At 6= ∅:

• For every v ∈ At set Nt(v)← {v} ∪ {w ∈ At : (v, w) ∈ Q},
• Set αt ← argmaxv∈At

|Nt(v)|,
• Set Ct ← Nt(αt),

• Set At+1 ← At \ Ct,
• t← t+ 1;

Output: C1, C2, ..., C`, where ` = t− 1.

Corollary 3 Let D = {D1, . . . , Dk} be any clustering of V = {1, . . . , n}, with di = |Di|,
i = 1, . . . , k, and d1 ≤ d2 ≤ . . . dk. Let S = 〈(v1, w1), yv1,w1〉, . . . , 〈(vm, wm), yvm,wm〉 be
labeled according to D, and be such that (vt, wt) are drawn uniformly at random from V 2.
Moreover, let Ŷt be the similarity prediction model produced by Oppa at the beginning of
round t, for t = 1, . . . ,m. If ŶS is drawn uniformly at random from the sequence Ŷ1, . . . , Ŷm,
then

EHA(ŶS , Y ) = O
(
n2

m
(n− dk)

)
. (2)

In the above, the expectation is over the random draw of S and the random draw of ŶS from
the sequence Ŷ1, . . . , Ŷm.

4. From HA to ER

This section exhibits a clustering algorithm that takes as input a similarity graph (V,P)
(like one produced after a training phase as in Corollary 3 of Section 3) and gives in output
a clustering C over V . The primary goal here is to show that for any other clustering D over
V , ER(C,D) is tightly related to HA(P,D). This algorithm will be a building block for later
results, but it can also be of independent interest.

Our algorithm, called Robust Greedy Clustering Algorithm (rgca, for brevity), is
displayed in Algorithm 4. The algorithm has two stages. The first stage is a robustifying
stage where the similarity graph (V,P) is converted into a (more robust) similarity graph
(V,Q) as follows: Given two distinct vertices v, w ∈ V , we have (v, w) ∈ Q if and only if
the Jaccard distance of their neighbourhoods (in (V,P)) is not bigger than 1− a, for some
distance parameter a ∈ [0, 1]. The second stage uses a greedy method to convert the graph
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(V,Q) into a clustering C. This stage proceeds in “rounds”. At each round t we have a set
At of all vertices which have not yet been assigned to any clusters. We then choose αt to be
the vertex in At which has the maximum number of neighbours (under the graph (V,Q)) in
At, and take this set of neighbours (including αt) to be the next cluster.

From a computational standpoint, the second stage of rgca runs in O(n2 log n) time,
since on every round t we single out αt (which can be determined in log n time by maintaining
a suitable heap data-structure), and erase all edges emanating from αt in the similarity
graph (V,Q). On the other hand, the first stage of rgca runs in O(n3) time, in the worst
case, though standard techniques exist that avoid the all-pairs comparison, like a Locality
Sensitive Hashing scheme applied to the Jaccard distance (e.g., (Rajaraman and Ullman,
2010, Ch.3)). We have the following result.

Theorem 4 Let C = {C1, . . . , Ck} be the clustering produced in output by rgca when
receiving as input similarity graph (V,P), and distance parameter a = 2/3. Then for any
clustering D = {D1, . . . , Dk}, with di = |Di|, i = 1, . . . , k, and d1 ≤ d2 ≤ . . . dk we have

ER(C,D) ≤ min
j=1,...,k

(
12

dj
HA(P,D) +

j−1∑
i=1

di

)
.

Hence, if the chosen D is the best approximation to P w.r.t. HA(, ), and we interpret
(V,P) as a noisy version of D, then small HA(P,D) implies small ER(C,D). In particular,
HA(P,D) = 0 implies ER(C,D) = 0 (simply pick j = 1 in the minimum). Notice that this
result only applies to the case when the similarity graph (V,P) is fully observed by our
clustering algorithm. As we already said, (V,P) may in turn be the result of a similarity
learning process when the similarity labels are provided by an unknown clustering D. In this
sense, Theorem 4 will help us delivering generalization bounds (as measured by ER(C,D)),
as a function of the generalization ability of this similarity learning process (as measured by
HA(P,D)).

The problem faced by rgca is also related to the standard correlation clustering problem
(Bansal et al., 2004). Yet, the goal here is somewhat different, since a correlation clustering
algorithm takes as input (V,P), but is aimed at producing a clustering C such that HA(P, C)
is as small as possible.

In passing, we next show that the construction provided by rgca is essentially optimal
(up to multiplicative constants). Let GD = (V,ED) be the similarity graph associated with
clustering D. We say that a clustering algorithm that takes as input a similarity graph over
V and gives in output a clustering over V is consistent if and only if for every clustering
D over V the algorithm outputs D when receiving as input GD. Observe that rgca is an
example of a consistent algorithm. We have the following lower bound.

Theorem 5 For any finite set V , any clustering D = {D1, D2, . . . , Dk} over V , any positive
constant σ, and any consistent clustering algorithm, there exists a similarity graph (V,P)
such that HA(P,D) ≤ σ, while

ER(C,D) ≥ min
j=1,...,k

(
1

2dj
σ − 1 +

1

4

j−1∑
i=1

di

)
, (3)

or ER(C,D) ≥ n
2 , where C is the output produced by the algorithm when given (V,P) as

input, and di = |Di|, i = 1, . . . , k, with d1 ≤ d2 ≤ . . . dk.

10
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From the proof given in the appendix, one can see that the similarity graph (V,P) used
here is indeed a clustering over V so that, as the algorithm is consistent, the output C must
be such a clustering. This result can therefore be contrasted to the results contained, e.g.,
in Meila (2012) about the equivalence between clustering distances, specifically Theorem

26 therein. Translated into our notation, that result reads as follows: ER(C,D) ≥ HA(P,D)
16dk

.
Our Theorem 5 is thus sharper but, unlike the one in Meila (2012), it does not apply to any
possible pairs of clusterings C and D, for in our case C is selected as a function of D.

We finally tie things together. The similarity graph (V,P) in input to rgca may for
instance be the predictor learned by a similarity learning algorithm, like Matrix Winnow
(Warmuth, 2007) or Oppa (Section 3). Since none of the two algorithms output a clustering
over V (despite the training labels are indeed consistent with a ground truth clustering D),
this is where our reduction rgca comes into play. For the sake of concreteness, suppose that
(V,P) is the model ŶS generated by the online-to-batch conversion of Corollary 3 applied
to Oppa after seeing m-many randomly drawn pairs (vt, wt) labeled according to D, and
let C be the corresponding clustering output by rgca . Then, combining Theorem 4 with
Corollary 3, we conclude that C satisfies

EER(C,D) ≤ E

[
min

j=1,...,k

(
12

dj
HA(P,D) +

j−1∑
i=1

di

)]

≤ min
j=1,...,k

(
12

dj
EHA(P,D) +

j−1∑
i=1

di

)

= O

(
min

j=1,...,k

(
1

dj

n2

m
(n− dk) +

j−1∑
i=1

di

))
, (4)

which is our generalization bound in the ER metric. As an example, if di = n/k for all i,
then we can pick j = 1 in Eq. (4) to achieve

EER(C,D) = O
(
k n2

m

)
. (5)

On the other hand, if D has few big clusters and many small ones the resulting bound looks
significantly different. As an extreme situation, let for concreteness d1 = d2 = . . . dk−h = 1,
and dk−h+1 = dk−h+2 = . . . dk = n−k+h

h , for some small h such that 2 ≤ h < k. Then picking

j = k − h + 1 in (4) yields EER(C,D) = O
(

h
n−k+h

n3

m + k
)
, and if, say, h = 3 and k is

either a constant ≥ 3 or k = o(n), then we have

EER(C,D) = O
(
n2

m
+ k

)
, (6)

as n grows large. Notice that (6) is typically smaller than (5), take for instance k =
√
n, and

m = n3/2: whereas Eq. (5) gives O(n) (which is vacuous, up to multiplicative constants, for
this size of m), Eq. (6) yields a bound of O(

√
n).

Next, we take a more direct route to obtain alternative ER-based statistical guarantees.
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5. A direct approach to bounding ER and a lower bound

In the previous section, we showed an indirect route to prove ER bounds. This route
specifically applies to algorithms that do not output a clustering after training, but only
a similarity model. Yet, there are algorithms, like the folk online clustering algorithm of
Section 3 (Algorithm 1), that do indeed produce a clustering at the end of each online round.
Hence, one is wondering whether a direct analysis in the ER metric for such algorithms can
be carried out. In the next theorem, we show a simple generalization bound achieved by
Algorithm 1 after training with m randomly drawn examples. Unlike the one in Eq. (4), we
have been unable to obtain a meaningful dependence on the cluster sizes di.

Theorem 6 Let D = {D1, . . . , Dk} be any clustering of V = {1, . . . , n}, with di = |Di|,
i = 1, . . . , k, and d1 ≤ d2 ≤ . . . dk. Let S = 〈(v1, w1), yv1,w1〉, . . . , 〈(vm, wm), yvm,wm〉 be
labeled according to D, and be such that (vt, wt) are drawn uniformly at random from V 2.
Then Algorithm 1 returns a clustering C such that ER(C,D) is bounded as follows:

EER(C,D) = O
(
k n2

m
log

n2

m

)
,

the expectation with respect to a random draw of S.

It is instructive to compare the upper bounds contained in Theorem 6 to the one in Eq. (4),
as specialized in (5) and (6). The bound in Theorem 6 tends to be weaker (by at least a
log factor – compare to the equal-size case in (5)). Moreover, it does not show an explicit
dependence on the cluster sizes di, making it unable to leverage cluster unbalancedness,
like in (6). On the other hand, the folk algorithm is definitely much faster to run than the
combination rgca + Oppa.

To close this section, we complement our upper bounds in Eqs. (4)-(6), and Theorem
6 by the following lower bound result, showing that the dependence of ER(, ) on k and n2

cannot in general be eliminated.

Theorem 7 Given any k > 2 and any m < n2

4 , there exists a clustering D of at most k
clusters such that, for any algorithm having as input a randomly drawn training sequence of
length m labeled according to D and giving in output clustering C, we have that EER(C,D) =

Ω
(

min
{
k n2

m , n
})

, the expectation with respect to a random draw of the training sequence.

6. Conclusions and Ongoing Research

We have investigated the general problem of learning a clustering over a finite set from
pairwise similarity labels, with no specific constraints on the cluster shapes, other than their
size. We did so in two settings:

1. An online setting, where we exhibited a novel characterization of the complexity of
learning the clustering in the mistake bound model of online learning;

2. In a batch stochastic setting, where we took either an indirect route that steps through
a reduction, called rgca, establishing a tight bridge between the two clustering
metrics HA and ER, or a direct route, where we have shown as a yardstick the kind of
misclassification error bounds a standard baseline may achieve for this problem.
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Finally, we complemented the above results with an almost matching lower bound that
applies to the ER metric when the training sequence is randomly drawn.

Two extensions we are currently exploring are: i. extending the underlying statistical
assumptions on data (e.g., sampling distribution-free guarantees) while retaining running
time efficiency, and ii. studying other learning regimes, like active learning, under similar
or broader statistical assumptions as those currently in this paper, possibly with side-
information, as in, e.g., Mazumdar and Saha (2017a,b).
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Appendix A. Proofs

A.1 Proof of Theorem 1

Proof Recall that Dk = argmaxD∈D |D|, and define for brevity V\k := V \Dk. The rounds
where Oppa can make mistakes is one of the cases contained in the following table.

Case (vt, wt) in: Value of ζ After: Round type

a Dk × V\k (∅, ∅) ζ ← (A,A) τ2

b V\k ×Dk (∅, ∅) ζ ← (A,A) τ2

c Dk × V\k (∅, A) ζ ← (A,B) τ6

d V\k ×Dk (A, ∅) ζ ← (B,A) τ6

e Dk × V\k (A, ∅) ζ ← (B,A) τ3

f V\k ×Dk (∅, A) ζ ← (A,B) τ3

g Dk ×Dk (∅, B) C ← MERGEA(C, Cv, Cw) τ4

h Dk ×Dk (B, ∅) C ← MERGEA(C, Cv, Cw) τ4

i Dk ×Dk (A,B) C ← MERGEA(C, Cv, Cw) τ7

j Dk ×Dk (B,A) C ← MERGEA(C, Cv, Cw) τ7

k Dk ×Dk (A,A) C ← MERGEA(C, Cv, Cw) τ7

l Dk ×Dk (B,B) C ← MERGEA(C, Cv, Cw) τ7

m V\k × V\k (∅, B) C ← MERGEA(C, Cv, Cw) τ8

n V\k × V\k (B, ∅) C ← MERGEA(C, Cv, Cw) τ8

o V\k × V\k (A,B) C ← MERGEA(C, Cv, Cw) τ8

p V\k × V\k (B,A) C ← MERGEA(C, Cv, Cw) τ8

q V\k × V\k (A,A) C ← MERGEA(C, Cv, Cw) τ8

r V\k × V\k (B,B) C ← MERGEA(C, Cv, Cw) τ8

In what follows, we define suitable quantities. Notice that these quantities are dynamic, in
that they change from round to round.

First, let ω(v) be a shorthand for ω(Cv). Let X := {v ∈ V\k : ω(v) 6= ∅}. Let τ1 be the
set of rounds on which an item v enters X . Note that once an item has entered X it cannot
leave, and hence |τ1| ≤ |V\k|. Let τ2 be the set of mistaken rounds of cases a and b, and τ3
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be the set of mistaken rounds of cases e and f . Observe that τ2 ∩ τ3 = ∅ and that both τ2

and τ3 are subsets of τ1. Hence

|τ2|+ |τ3| ≤ |τ1| ≤ |V\k| .

Let δ = {C ∈ C : C ⊆ V\k} and Y = {C ∈ δ : ω(C) = B}. Note that the cardinality of δ \ Y
never increases over time, and is initially |V\k|, so it can only decrease |V\k| times. Let τ6 be
the set of mistaken rounds of cases c and d. Since, for every round in τ6 we have that the
cardinality of δ \ Y decreases, we must have

|τ6| ≤ |V\k|.

Next, let ε = {C ∈ C : C ⊆ Dk}, and W = {C ∈ ε : ω(C) = B}. Observe that W only
increases on rounds in τ3. Let τ4 be the set of mistaken rounds with mistakes of cases g and
h. Note that for a round in τ4 the cardinality of W decreases by one. Coupled with the fact
that W only increases on rounds in τ3, and only by one each time, we have that

|τ4| ≤ |τ3| .

Let U = {C ∈ ε : ω(C) 6= ∅}. Notice first that U is initially empty, and increases in
cardinality on mistaken rounds in τ2 (cases a and b) or τ6 (cases c and d), where it only
increases by one each time. Let τ7 be the set of mistaken rounds of cases i to l, and observe
that in such rounds U decreases in cardinality, hence directly from above we have

|τ7| ≤ |τ2|+ |τ6| .

Finally, let τ8 be the set of mistaken rounds of cases m to r. Note that, for every round in
τ8, we have that |δ| deceases, so that since |δ| never increases, and is initially equal to |V\k|,
we conclude that

|τ8| ≤ |V\k| .

Now, because every mistaken round is either in τ2, τ3, τ6, τ4, τ7 or τ8, from the above
displayed inequalities we have that the total number of mistakes

|τ2|+ |τ3|+ |τ6|+ |τ4|+ |τ7|+ |τ8|

made by Oppa is bounded from above as follow:

|τ2|+ |τ3|+ |τ6|+ |τ4|+ |τ7|+ |τ8| ≤ |V\k|+ |τ6|+ |τ4|+ |τ7|+ |τ8|
≤ 2|V\k|+ |τ4|+ |τ7|+ |τ8|
≤ 2|V\k|+ |τ3|+ |τ7|+ |τ8|
≤ 2|V\k|+ |τ3|+ |τ2|+ |τ6|+ |τ8|
≤ 3|V\k|+ |τ6|+ |τ8|
≤ 4|V\k|+ |τ8|
≤ 5|V\k| ,

thereby concluding the proof.
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A.2 Proof of Theorem 2

Proof We describe an adversarial strategy forcing any algorithm to achieve the lower bound
of Theorem 2. This strategy is described in Algorithm 5. Notice that the strategy only
focuses on the first n− 1 rounds of a potentially longer training sequence S. In fact, any
learning algorithm is forced by this strategy to make at least n− k − dk mistakes over the
first n − 1 examples 〈(v1, w1), yv1,w1〉, . . . , 〈(vn−1, wn−1), yvn−1,wn−1〉 of S. These examples
are such that vt ≡ wt−1 and vt 6≡ vt−1 for all t > 1. In other words, the sequence of pairs
(vt, wt) corresponding to the first n− 1 examples of S is a line graph spanning the whole
vertex set V .

Algorithm 5 Adversarial strategy for the online similarity prediction problem.

Input: Vertex set V = {1, . . . , n}; sequence of cluster sizes 〈d1, d2, . . . , dk〉.
Initialization:

• For each j = 1, . . . , k: Set d′j ← dj and Dj ← ∅;

• Select arbitrarily i ∈ [k]; Di ← {v1}; Ṽ ← {v1}; d′i ← d′i − 1;

For t = 1, . . . , n− 1:

1. Select arbitrarily wt ∈ V \ Ṽ ; Ṽ ← Ṽ ∪ {wt};
2. Ask for label yt;

3. If (ŷt = 1 ∨ d′i = 0) ∧ (∃j 6= i : d′j 6= 0), then

Set i to an arbitrarily selected cluster index j 6= i such that d′j 6= 0;

4. Di ← Di ∪ {wt}; d′i ← d′i − 1;

The first vertex v1 is assigned to a cluster Di selected arbitrarily. At each round t, a
new vertex wt is assigned to a cluster selected according to the learner’s prediction. This
selection is accomplished in order to force a mistake whenever possible. The number of items
that can be assigned to each cluster Dj for all j ∈ [k], is initially equal to dj , and decreases
over time. At any time t, for all j ∈ [k], let d′j be the difference between dj and the number
of items assigned to Dj in the first t− 1 rounds. In other words, for each j ∈ [k], d′j is the
number of items that can be assigned to Dj during the remaining rounds t, t+ 1, . . . , n− 1.

The core of the adversarial strategy is simple. Given any round t ∈ [n − 1], let Dt be
the set of all clusters Dj such that, at time t, d′j 6= 0 and j 6= µD(vt). We then have the
following cases:

• If the learner predicts 1 (similar) and Dt 6≡ ∅, then item wt is assigned to a cluster Dj

selected arbitrarily in Dt. This assignment thus forces one mistake.

• If the learner predicts 0 (dissimilar) and Dt 6≡ ∅, then we have two sub-cases:

– If d′µD(vt)
6= 0, then item wt is assigned to cluster DµD(vt), hence forcing one

mistake.

– If d′µD(vt)
= 0, then wt cannot be assigned to DµD(vt), because dµD(vt) items

have already been assigned to this cluster. In this case, wt is added to a cluster
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Dj selected arbitrarily in Dt, such as when the learner predicts 1 and Dt 6≡ ∅.
However, since now the learner predicts 0, no mistake can be forced.

• Finally, if Dt ≡ ∅, according to the definition of Dt, the only cluster Dj such that
d′j 6= 0 is DµD(vt). Hence wt must be assigned to DµD(vt). Note that, in this case, no
mistake can be forced if the learner predicts 1.

In order to quantify the effectiveness of this strategy, observe that, at each round
t ∈ [n− 1] we have in the pseudocode of Algorithm 5 that i = µD(vt). Line 3 and 4 of the
pseudocode ensure that one mistake is forced at any round such that both the following
conditions are satisfied: (a) d′i 6= 0, and (b) ∃j 6= i : d′j 6= 0. In fact, if both these conditions
hold, then we have either (i) µD(vt) = µD(wt) if ŷt = 0, which implies yt = 1, or (ii)
µD(vt) 6= µD(wt) if ŷt = 1, which implies yt = 0.

The number of rounds t ∈ [n− 1] such that condition (a) is violated cannot be larger
than k − 1. In fact, since t ≤ n− 1, we must always have at least one cluster index j such
that d′j 6= 0. On the other hand, the number of rounds t ∈ [n− 1] such that condition (b) is
violated cannot be larger than maxj dj = dk. Hence, the number of mistakes so forced is
lower bounded by the difference between n− 1 and k− 1 + dk, i.e., n− k− dk, as claimed.

A.3 Proof of Theorem 4

The following two lemmas are an immediate consequence of the triangle inequality for dist.

Lemma 8 Let a, b ∈ [0, 1] be such that a+ b ≥ 3/2, and sets U,W,X, Y, Z satisfy

1. dist(U,W ) ≤ 1− a;

2. dist(W,X) ≤ 1− b;

3. dist(U, Y ) ≤ 1− a;

4. dist(Z,X) = 1.

Then dist(Y, Z) ≥ 1− b.

Proof We can write

1 = dist(Z,X)

≤ dist(Z, Y ) + dist(Y,U) + dist(U,W ) + dist(W,X)

≤ dist(Z, Y ) + 1− a+ 1− a+ 1− b ,

so that
dist(Z, Y ) ≥ 2a+ b− 2 ≥ 1− b,

the last inequality using the assumption a+ b ≥ 3/2. This concludes the proof.

Lemma 9 Let a, b ∈ [0, 1] be such that 2b ≥ 1 + a, and sets X,Y, Z satisfy
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1. dist(X,Y ) ≤ 1− b:

2. dist(Y, Z) ≥ 1− a .

Then dist(X,Z) ≥ 1− b.

Proof We can write

1− a ≤ dist(Y,Z) ≤ dist(Y,X) + dist(X,Z) ≤ 1− b+ dist(X,Z),

so that
dist(X,Z) ≥ b− a ≥ 1− b,

the last inequality deriving from 2b ≥ 1 + a. This concludes the proof.

With these two simple lemmas handy, we are now ready to analyze rgca. The reader is
compelled to refer to Algorithm 4 for notation. In what follows, a ∈ [0, 1] is rgca’s distance
parameter, and b ∈ [0, 1] is a constant such that the two conditions on a and b required by
Lemmas 8 and 9 simultaneously hold. It is easy to see that these conditions are equivalent
to5

a ≥ 2

3
, b ≥ 1 + a

2
. (7)

The following definition will be useful.

Definition 10 A b-anomaly in the similarity graph (V,P) is a vertex v ∈ V for which
dist(DµD(v),Γ(v)) ≥ 1− b, for some constant b ∈ [0, 1] satisfying (7). We denote by Λb the
set of all anomalies. A centered round of rgca is any t ≤ ` in which Nt(αt) 6⊆ Λb. We
denote by Ωb the set of all centered rounds. A centered label is any class i ∈ {1, . . . , k} such
that Di 6⊆ Λb. We denote by ∆b the set of all centered labels.

Lemma 11 For any round t ≤ `, there exists a class j ∈ {1, . . . , k} such that for every
vertex v ∈ Nt(αt) \ Λb we have µD(v) = j.

Proof Suppose, for the sake of contradiction, that we have v, w ∈ Nt(αt) with v, w /∈ Λb

and µD(v) 6= µD(w). Define U := Γ(αt), W := Γ(v), X := DµD(v), Y := Γ(w), and
Z := DµD(v). Since v, w ∈ Nt(αt), by the way graph (V,Q) is constructed, we have
both dist(U,W ) ≤ 1 − a and dist(U, Y ) ≤ 1 − a. Moreover, since v /∈ Λb we have
dist(W,X) < 1− b. Also, µD(v) 6= µD(w) implies dist(Z,X) = 1. We are therefore in a
position to apply Lemma 8 verbatim, from which we have dist(Y,Z) ≥ 1− b, i.e., w ∈ Λb.
This is a contradiction, which implies the claimed result.

Lemma 11 allows us to make the following definition.

Definition 12 Given a centered round t ∈ Ωb, we define γ(t) to be the unique class j such
that for every vertex v ∈ Nt(αt) \ Λb we have µD(v) = j.

Lemma 13 For any round t ≤ ` and vertices v, w ∈ At with v /∈ Λb, w /∈ Nt(v) and
µD(v) = µD(w) we have w ∈ Λb.

5. For instance, we may set a = 2/3 and b = 5/6.
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Proof Define X := DµD(v), Y := Γ(v) and Z := Γ(w). Since v /∈ Λb we have dist(X,Y ) ≤
1− b. Moreover, w /∈ Nt(v) implies dist(Y,Z) ≥ 1− a. By Lemma 9 we immediately have
dist(X,Z) ≥ 1 − b. But since X = DµD(v) = DµD(w), this equivalently establishes that
w ∈ Λb.

Lemma 14 For any centered round t ∈ Ωb, any vertex v ∈ Nt(αt) \ Λb, and any vertex
w ∈ Nt(αt) \Nt(v), we have w ∈ Λb.

Proof If µD(w) 6= µD(v) then by Lemma 11 we must have w ∈ Λb, so we are done. On
the other hand, if µD(w) = µD(v), we have v /∈ Λb, w /∈ Nt(v) and µD(v) = µD(w) which
implies, by Lemma 13, that w ∈ Λb.

Lemma 15 For any centered round t ∈ Ωb, we have |(At+1 ∩Dγ(t)) \ Λb| ≤ |Ct ∩ Λb|.

Proof Since t ∈ Ωb there must exist a vertex v ∈ Nt(αt) with v /∈ Λb, so let us consider
such a v. Note that by the way the algorithm works, we have |Nt(αt)| ≥ |Nt(v)|, so that
|Nt(v) \Nt(αt)| ≤ |Nt(αt) \Nt(v)|. Next, by Lemma 14 we have Nt(αt) \Nt(v) ⊆ Λb, hence
Nt(αt) \Nt(v) ⊆ Nt(αt) ∩ Λb and, consequently, |Nt(αt) \Nt(v)| ≤ |Nt(αt) ∩ Λb|. Recalling
that Ct = Nt(αt), we have therefore obtained

|Nt(v) \Nt(αt)| ≤ |Nt(αt) \Nt(v)| ≤ |Nt(αt) ∩ Λb| = |Ct ∩ Λb| . (8)

Now suppose we have some vertex w ∈ (At+1 ∩Dγ(t)) \ Λb. For the sake of contradiction,
let us assume that w /∈ Nt(v). Then w ∈ At+1 implies w ∈ At which, combined with
Lemma 13 together with the fact that µD(v) = γ(t) = µD(w), implies that w ∈ Λb,
which is a contradiction. Hence we must have w ∈ Nt(v). Moreover, since w ∈ At+1 we
must have w /∈ Nt(αt). We have hence shown that w ∈ Nt(v) \ Nt(αt), implying that
|(At+1 ∩Dγ(t)) \ Λb| ≤ |Nt(v) \Nt(αt)|. Combining with (8) concludes the proof.

We now turn to considering centered labels.

Lemma 16 For any centered label i ∈ ∆b there exists some round t ≤ ` such that γ(t) = i.

Proof Since i is a centred label, pick v ∈ Di \Λb, Further, since C1, C2, ..., C` is a partition
of V , choose t such that v ∈ Ct. Now, since v ∈ Ct \ Λb we have that t ∈ Ωb and, by Lemma
11, that γ(t) = µD(v) = i.

Lemma 16 allows us to make the following definition.

Definition 17 Given a centered label i ∈ ∆b, we define ψ(i) := min{t : γ(t) = i}.

Lemma 18 For any centered label i ∈ ∆b, we have Di \ Λb ⊆ Aψ(i).

Proof Suppose, for contradiction, that there exists some v ∈ Di \ Λb with v /∈ Aψ(i). Then,
by definition of Aψ(i) there exists some round to < ψ(i) with v ∈ Cto . As v /∈ Λb we have
to ∈ Ωb and, by Lemma 11, that µD(v) = γ(to). Hence γ(to) = µD(v) = i which, due to the
condition to < ψ(i), contradicts the fact that ψ(i) := min{t : γ(t) = i}.

20



On Similarity Prediction and Pairwise Clustering

Lemma 19 For any centred label i ∈ ∆b we have |Di \ Cψ(i)| ≤ |Di ∩ Λb|+ |Cψ(i) ∩ Λb|.

Proof Suppose we have some v ∈ Di \ Cψ(i), and let us separate the two cases: (i) v /∈ Λb
and, (ii) v ∈ Λb.

Case (i). Since v ∈ Di \ Λb we have, by Lemma 18, that v ∈ Aψ(i). Since v /∈ Cψ(i)

this implies that v ∈ Aψ(i)+1. Notice that γ(ψ(i)) = i so Di = Dγ(ψ(i)) and hence v ∈
(Aψ(i)+1∩Dγ(ψ(i)))\Λb. By Lemma 15 the number of such vertices v is hence upper bounded
by |Cψ(i) ∩ Λb|.

Case (ii). In this case, we simply have that v ∈ Di ∩ Λb, so the number of such vertices
v is upper bounded by |Di ∩ Λb|.

Putting the two cases together gives us |Di \Cψ(i)| ≤ |Di ∩Λb|+ |Cψ(i) ∩Λb|, as required.

Having established the main building blocks of the behavior of rgca, we now turn to
quantifying the resulting connection between ER and HA. To this effect, we start off by
defining a natural map Υ associated with the clustering {C1, . . . , C`} generated by rgca,
along with a corresponding accuracy measure.

Definition 20 The map Υ : {D1, . . . , Dk} → {C1, . . . , C`} is defined as follows:

Υ(Di) =

{
Cψ(i) if i ∈ ∆b

∅ if i /∈ ∆b

Moreover, let M(Υ) :=
∑k

i=1 |Di \Υ(Di)|.

We have the following lemma.

Lemma 21 M(Υ) ≤ 2|Λb|.

Proof For i /∈ ∆b we have Di ⊆ Λb and Υ(Di) = ∅ so that

|Di \Υ(Di)| = |Di| = |Di ∩ Λb| = |Di ∩ Λb|+ |∅| = |Di ∩ Λb|+ |Υ(Di) ∩ Λb|.

On the other hand, for i ∈ ∆b we have Υ(Di) = Cψ(i) so that, by Lemma 19, we can write

|Di \Υ(Di)| ≤ |Di ∩ Λb|+ |Υ(Di) ∩ Λb| .

Hence, in both cases, for all i ∈ {1, . . . , k} we have

|Di \Υ(Di)| ≤ |Di ∩ Λb|+ |Υ(Di) ∩ Λb| ,

implying

M(Υ) ≤
k∑
i=1

(
|Di ∩ Λb|+ |Υ(Di) ∩ Λb|

)
. (9)

Now, both {D1, . . . , Dk} and {Υ(D1), . . . ,Υ(Dk)} are a partition of V , implying

|Λb| =
k∑
i=1

|Di ∩ Λb| =
k∑
i=1

|Υ(Di) ∩ Λb| .
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Plugging back into (9) yields the claimed result.

Next, observe that, by its very definition, HA(P,D) can be rewritten as

HA(P,D) =
∑
v∈V
|(DµD(v) \ Γ(v)) ∪ (Γ(v) \DµD(v))| . (10)

Lemma 22 We have HA(P,D) ≥ (1− b)
∑k

i=1 di|Di ∩ Λb| .

Proof Fix class i ∈ {1, . . . , k} and vertex v ∈ Di ∩ Λb. Then v ∈ Λb implies
dist(DµD(v),Γ(v)) ≥ 1− b, which in turn yields

|(DµD(v) \ Γ(v)) ∪ (Γ(v) \DµD(v))| ≥ (1− b)di ,

thereby concluding that for all fixed i∑
v∈Di∩Λb

|(DµD(v) \ Γ(v)) ∪ (Γ(v) \DµD(v))| ≥ (1− b) |Di ∩ Λb| di .

Since Λb =
⋃k
i=1(Di ∩ Λb), being the sets Di ∩ Λb, i = 1, . . . , k, pairwise disjoint, we can

write

∑
v∈Λb

|(DµD(v) \ Γ(v)) ∪ (Γ(v) \DµD(v))| =
k∑
i=1

∑
v∈Di∩Λb

|(DµD(v) \ Γ(v)) ∪ (Γ(v) \DµD(v))|

≥ (1− b)
k∑
i=1

|Di ∩ Λb| di .

Thus, from (10), and the fact that Λb ⊆ V the result immediately follows.

Lemma 23 The number |Λb| of b-anomalies can be upper bounded as

|Λb| ≤ min
j=1,...,k

(
1

dj(1− b)
HA(P,D) +

j−1∑
i=1

di

)
.

Proof For any j = 1, . . . , k we can write

|Λb| =
k∑
i=1

|Di ∩ Λb| =
j−1∑
i=1

|Di ∩ Λb|+
k∑
i=j

|Di ∩ Λb| ≤
j−1∑
i=1

di +

k∑
i=j

|Di ∩ Λb|

so all that is left to prove is that the last sum in the right-hand side is at most
1

dj(1−b) HA(P,D).

Since, for all classes i such that i ≥ j, we have di ≥ dj , we can write

k∑
i=j

|Di ∩ Λb| ≤
k∑
i=j

di
dj
|Di ∩ Λb| ≤

1

dj

k∑
i=1

di |Di ∩ Λb| ≤
1

dj(1− b)
HA(P,D) ,
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where the last inequality derives from Lemma 22. This concludes the proof.

We are now ready to combine to above lemmas into the proof of Theorem 4.
Proof (Theorem 4) Direct from Lemmas 21 and 23 we have

M(Υ) ≤ min
j=1,...,k

(
2

dj (1− b)
HA(P,D) +

j−1∑
i=1

di

)
.

We then optimize for b by selecting b = 1+a
2 , and then for a by setting a = 2/3, so as to

fulfil conditions (7). The result follows by the fact that ER(C,D) ≤ M(Υ), for ER(C,D)
is a minimum over all possible cluster maps D → C, while Υ is just the one in Definition 20.

A.4 Proof of Theorem 5

Proof For ease of proof, we assume that dj is even for all j (adapting the proof to the
general case is trivial). We consider two cases:

1. σ ≥ 1
2

∑k
j=1 d

2
j ;

2. σ < 1
2

∑k
j=1 d

2
j .

For the first case we choose, for every j = 1, . . . , k, sets P+
j and P−j such that |P+

j | =

|P−j | = dj/2 and P+
j ∪ P

−
j = Dj . We then construct the similarity graph (V, EP), where

clustering P is made up of the 2k clusters {P+
j : j = 1, . . . , k} ∪ {P−j : j = 1, . . . , k}. Since

the algorithm is consistent, we must have C = P. Now, let f be an injection from D to C,
and consider any j = 1, . . . , k. If f(Dj) ∈ {P+

j , P
−
j } then we have |Dj \ f(Dj)| = dj/2, and

otherwise |Dj \ f(Dj)| = dj , so that

k∑
j=1

|Dj \ f(Dj)| ≥
1

2

k∑
j=1

dj = n/2 .

Since f is arbitrary, this shows that ER(C,D) ≥ n
2 . Moreover, we observe that the only

incorrect similarity/dissimilarity predictions of P with respect to D are those between P+
j

and P−j , for every j, which gives us 2|P+
j | · |P

−
j | = d2

j/2 incorrect predictions for every j.

This implies that HA(P,D) =
∑k

j=1 d
2
j/2, which is no greater than σ, thereby completing

the proof for the first case.
We now turn to the second case. Let jo ∈ {1, . . . , k} be such that

1

2

jo−1∑
i=1

d2
i ≤ σ <

1

2

jo∑
i=1

d2
i ,

and ω := σ − 1
2

∑jo−1
i=1 d2

i . Notice that ω ≤ d2
jo/2. We choose, for every j < jo, sets P+

j and

P−j such that |P+
j | = |P−j | = dj/2 and P+

j ∪ P
−
j = Dj . Let c = bω/2djoc, and note that

c ≤ djo/4 < djo/2. We can hence define subsets X,Y ⊆ Djo such that |X| = c, X ∪Y = Djo

and X ∩ Y = ∅.
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We construct the similarity graph (V, EP), where clustering P is made up of the k + jo

clusters

{P+
j : j = 1, . . . , jo − 1} ∪ {P−j : j = 1, . . . , jo − 1} ∪ {X,Y } ∪ {Dj : j > jo} .

Again, since the algorithm is consistent, we must have C = P. As before, let f be an
arbitrary injection from D to C, and consider any j < jo. Then if f(Dj) ∈ {P+

j , P
−
j } we

have |Dj \ f(Dj)| = dj/2, otherwise |Dj \ f(Dj)| = dj , so that |Dj \ f(Dj)| ≥ dj/2 holds
for any j < jo. Further, if f(Djo) = X then |Djo \ f(Djo)| = djo − c, if f(Djo) = Y then
|Djo \ f(Djo)| = c, and otherwise |Djo \ f(Djo)| = djo . In any case, since c < djo/2, we have
|Djo \ f(Djo)| ≥ c. This allows us to conclude that

ER(C,D) =

k∑
j=1

|Dj \ f(Dj)|

≥ c+
1

2

jo−1∑
j=1

dj

= bω/2djoc+
1

2

jo−1∑
j=1

dj

≥ ω

2djo
− 1 +

1

2

jo−1∑
j=1

dj

=
σ

2djo
− 1− 1

4doj

jo−1∑
j=1

d2
j +

1

2

jo−1∑
j=1

dj

=
σ

2djo
− 1 +

1

2

jo−1∑
j=1

dj

(
1− dj

2djo

)

≥ σ

2djo
− 1 +

1

4

jo−1∑
j=1

dj .

Finally, notice that the only incorrect similarity/dissimilarity predictions of P with respect
to D are those between P+

j and P−j , for every j < jo, and those between X and Y , which

gives us 2|P+
j | · |P

−
j | = d2

j/2 incorrect predictions for every j < jo, and an additional
2|X| · |Y | = 2c(djo − c) ≤ 2cdjo ≤ ω incorrect predictions between X and Y . This implies
that

HA(P,D) ≤ ω +

jo−1∑
j=1

d2
j/8

which is in turn bounded from above by σ. This completes the proof for the second case.

A.5 Proof of Theorem 6

The following simple lemma is of preliminary importance.
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Lemma 24 Let H = (V,E) be an Erdos-Renyi G(n, p) graph. For each subgraph

H ′(V ′, E′) ⊆ H with n′ = |V ′| nodes, when p = λ logn′

n′ the following separation prop-
erty holds: As n′ approaches infinity, the expected number z of isolated vertices in G′ equals
(n′)1−λ. Furthermore, in the special case when n′ = 1

p , we always have z ≥ 1
pe .

Proof In order to prove this property, it suffices to observe that, given any node in V ′,
the probability that it is isolated in G′ is equal to (1 − p)n′−1, which in turn is equal to
e−λ logn′ = (n′)−λ as n′ approaches infinity. Hence we have z = (n′)1−λ. By a similar

argument, it is immediate to verify that in the case when n′ = 1
p we have z = 1

p(1− p)
1
p
−1

which is never smaller than 1
ep .

Proof (Theorem 6) Let G′ = (V,E′) denote the undirected graph whose edge set E′ is made
up of all pairs of vertices drawn in S. Since S is drawn uniformly at random, G′ turns out
to be an Erdos-Renyi graph G(n, p), with p = m/n2.

Setting λ = 2 in Lemma 24, we have that for all clusters C ∈ C such that 2 log |C|
|C| ≤ p,

cluster C can be completely detected by Algorithm 1 (line 3 therein) with probability at
least 1

|C| . Hence, the expected number of misclassification errors made when detecting such

clusters is upper bounded by 1 per cluster. In order to satisfy the assumption 2 log |C|
|C| ≤ p,

the size of these clusters must be equal to a value τ = Ω (ρ log ρ), where we set ρ = 1
p .

Finally, we can conclude the proof observing that the total number of misclassification
errors is bounded in expectation by the sum of the following two quantities: (i) the number
of clusters larger than τ , which in turn is bounded by k, and (ii) the total number of nodes
belonging to the clusters smaller or equal to τ , which in turn is bounded by kτ :

E [ER(C,D)] = O (k(1 + τ)) = O (kρ log ρ) , (11)

thereby concluding the proof.

A.6 Proof of Theorem 7

Proof As in the proof of Theorem 6, we denote by G′ = (V,E′) the undirected graph whose
edge set E′ is made up of all pairs of vertices drawn in the training set S. Since S is drawn
uniformly at random, G′ turns out to be an Erdos-Renyi graph.

The basic idea of this proof is to construct a collection H of z disjoint subsets of V , call
them H1, H2 . . . , Hz, and, for all j ∈ {1, . . . , z}, to randomly label all nodes of each subset
Hj using only a pair of classes of {1, . . . , k}. These z pairs of classes must be distinct and
disjoint. The random labeling is accomplished in such a way that no algorithm can exploit
the training set to guess how each Hj is labeled. More specifically, H is created so as to
satisfy the following two properties:

Property (i) For all j = 1, . . . , z, no pair of nodes in Hj are connected by an edge in the
training graph representation G′, i.e. for each pair of nodes u, v ∈ Hj , we have (u, v) 6∈ S.

Property (ii) For all j = 1, . . . , z, we have that the expected size of Hj (over the

random draw of the training set S) is larger than n2

2me , if m > n
2 , where e is the base of

natural logarithms, while it is Θ(n) if m ≤ n
2 .
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Figure 1: Illustration of the randomized labeling that achieves the lower bound in Theorem 7.
The grey area includes all the nodes of V . In this example, we set z = 3 and k = 7.
In this case we thus have

⌊
k−1

2

⌋
= 3. G is the collection of the 3 vertex-disjoint

subgraphs G′1, G′2 and G′3. The node set size of each of these subgraphs is equal to⌊
n2

2m

⌋
. The subsets of isolated vertices in these 3 subgraphs are H1, H2, and H3,

which are depicted in this figure by the bicoloured circles. Each color represents a
class. For each j, the expected size of Hj must be linear in the size of the node
set of G′j . For j = 1, 2, 3, set Hj is labeled by selecting uniformly at random a
class between the two classes (or colors) 2j − 1 and 2j. All the remaining nodes
in the grey area of this picture are given the same class 7. Hence, for each pair
of nodes u and v both belonging to Hj for some j, we must have (u, v) 6∈ S. On
the contrary, for each pair u and v with u ∈ Hj , for some j, and v 6∈ Hj , we must
have yu,v = 0. The information of the training set cannot be used to predict how
the nodes in H1, H2, and H3, are labeled. In fact, any algorithm will make 1

2
mistakes in expectation over the randomized labeling on each node contained in
these subsets.

Figure 1 provides a pictorial explanation of the randomized labeling strategy we are
going to describe.

We now describe in detail the randomized labeling strategy (a randomized clustering
D representing a clustering with k clusters), and derive a lower bound for ES,D[ER(C,D)]
when H satisfies both the above properties.

Let z ≤ bk−1
2 c. Once we constructed such a collection H of clusters, we associate a

distinct pair of classes in {1, . . . , k} with each Hj in such a way that all these class pairs are
distinct and disjoint. This allows us to always leave one class out (say, class k) for labeling
all remaining vertices in V . In particular, we associate with Hj the class pair (2j − 1, 2j),
and then adopt the following randomized strategy:
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For all j = 1, . . . , z, set Hj is split uniformly at random into two subsets H ′j and H ′′j ,
and we label H ′j by class 2j − 1 and H ′′i by class 2j. All remaining nodes in V \ ∪zj=1Hj are
labeled with class k.

This randomized labeling strategy ensures that, in order to guess the true clustering D,
no learning algorithm can exploit the information provided by S, since for all node pairs
(v, w) with v ∈ Hj , for some j ∈ {1, . . . , z}, one of two cases hold:

Case (a): w ∈ Hj , which implies that (v, w) 6∈ S, because of Property (i). We have
therefore no training set information related to the similarity of nodes laying in the same set
Hj .

Case (b): w /∈ Hj . In this case, whenever (v, w) ∈ S, we always have yv,w = 0, and this
information cannot be exploited to guess the randomized labeling of Hj .

In short, no training information can be exploited to guess how each set Hj is split into
the two subsets H ′j and H ′′j . This entails that any clustering algorithm will incur an expected
number of misclassification errors proportional to

z∑
j=1

|Hj | = Ω

(
min

{
n2

m
z, n

})
,

the latter equality deriving from Property (ii).

We now turn to describing the detailed construction of H. We will explain how to select
the z subsets satisfying Property (i), and show that their size is bounded from below as
required by Property (ii). This will lead to the claimed lower bound.

Definition of z. Let

z = min

{
f(n,m),

⌊
k − 1

2

⌋}
, where f(n,m) = max

{⌊
n

b n2/2mc

⌋
, 1

}
.

Satisfaction of Property (i).
Let H′ be a collection of disjoint subsets of V created as follows. H′ is generated by selecting

uniformly at random z disjoint subsets of V such that each node subset contains
⌊
n2

2m

⌋
nodes. The collection of subsets H = {H1, . . . ,Hz} is constructed as described next. Let
G ≡ {G′1, G′2, . . . , G′z}, where G′j is the subgraph of G′ induced by the nodes in the j-th set
of H′. We create z-many disjoint subsets H1, H2, . . . ,Hz by selecting all vertices that are
isolated in each graph of G, and set H ≡ {H1, H2, . . . ,Hz}. Property (i) is therefore satisfied.

Satisfaction of property (ii).

By definition of H′, each graph of the collection G has
⌊
n2

2m

⌋
nodes in expectation. Using

the second part of Lemma 24, we conclude that the expected size of each set in H is not

smaller than
bn2/2mc

e .

Hence the collection of sets S so generated fulfils at the same time both Properties (i)
and (ii).

In order to conclude the proof, we compute our lower bound based on the definition
of z and Property (ii). As anticipated, because of the randomized labeling strategy, the
expected number of misclassification errors made by any algorithm is proportional to
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∑z
j=1 |Hj | = Ω

(
min

{
n2

m z, n
})

. Plugging in the values of z yields

z∑
j=1

|Hj | = Ω

min

min
{

max
{⌊

n
b n2/2mc

⌋
, 1
}
,
⌊
k−1

2

⌋}
m/n2

, n


 = Ω

(
min

{
n2

m
k, n

})
,

and the proof is concluded.
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