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Abstract

We study the problem of learning the clusters of a given graph in the self-directed
learning setup. This learning setting is a variant of online learning, where rather
than an adversary determining the sequence in which nodes are presented, the
learner autonomously and adaptively selects them. While self-directed learning
of Euclidean halfspaces, linear functions, and general abstract multi-class hypoth-
esis classes was recently considered, no results previously existed specifically for
self-directed node classification on graphs. In this paper, we address this problem
developing efficient algorithms for it. More specifically, we focus on the case of
(geodesically) convex clusters, i.e., for every two nodes sharing the same label, all
nodes on every shortest path between them also share the same label. In partic-
ular, we devise a polynomial-time algorithm that makes only 3(h(G) + 1)4 lnn
mistakes on graphs with two convex clusters, where n is the total number of nodes
and h(G) is the Hadwiger number, i.e., the size of the largest clique minor of the
graph G. We also show that our algorithm is robust to the case that clusters are
slightly non-convex, still achieving a mistake bound logarithmic in n. Finally, for
the more standard case of homophilic clusters, where strongly connected nodes
tend to belong the same class, we devise a simple and efficient algorithm.

1 Introduction

We study the problem of learning node clusters of a given graph G = (V,E), where V and
E respectively denote its vertex and edge set, in the self-directed setting [Goldman and Sloan,
1994, Ben-David et al., 1997], that recently regained novel interest [Devulapalli and Hanneke, 2024,
Diakonikolas et al., 2023, Kontonis et al., 2023]. Each node in v ∈ V , with |V | = n, is associated
with a label belonging to Y = {1, 2, . . . , k} = [k], where k is the total number classes, through
a labeling function y : V → [k]. In this learning setting, in an online fashion, at each time step
t ∈ {1, . . . , n} the learner is required to select a node vt ∈ V and predict its label. After each pre-
diction, the learner receives the true label y(vt), and, if it is different from the predicted one ŷ(vt), it
made a mistake. The learner continues until all n labels are predicted and received, i.e., for exactly
n trials. Its goal is to predict all labels while minimizing the number of mistakes.
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We primarily focus on node classification in sparse graphs that emerge in various real-world do-
mains, such as, social networks (including collaboration and citation networks), communication
networks, biological networks (e.g., protein-protein interaction networks, RNA structures), and in-
frastructure networks (e.g., transportation). On this class of graphs, self-directed learning can be
used to model common practical problems. For example, in advertising on a social network, the
advertizer can offer one among k products to each user (nodes), who can either buy it or not. Since
we learn the reaction of the user(s) after each offer, it is advantageous to offer the product to a sin-
gle user per trial in a sequential fashion exploiting the knowledge of the (social) network topology.
This approach allows us to observe the reaction (label) and tailor subsequent offers to minimize
the number of mistakes. Another example is the public transportation system, where each station
is a node in a connected graph. Decisions involve allocating resources like trains or buses to each
station sequentially, one station at a time. The nodes (stations) are labeled based on the urgency
of service reinforcement or type of service required. The goal is to minimize assignment errors to
maintain operational efficiency and passenger satisfaction. Finally, in a smart grid, each substation
or component distributing energy is a node in a graph, connected to indicate the energy transmission
paths. Nodes are labeled with the type of energy distributed or the demand level. Decisions on
how to distribute energy to each node are made sequentially, aiming to minimize errors in energy
distribution.

Even assuming the graph is fully given, learning cannot happen without an inductive bias. Hence, in
Section 3, we assume that all clusters are convex, that is, for any pair of nodes a, b in the same cluster,
all nodes on shortest paths between a and b also belong to exactly that cluster. This assumption holds
for many communities in real-world graphs, as we discuss in Section 6. In Section 3.2, we also show
how to deal with labeling where this is assumption can be violated for some pairs of nodes. While
the convexity assumption is related to the more common homophily assumption—the tendency of
strongly connected nodes to be associated with the same class, they capture different aspects and
are independent of each other. There can be convex and strongly non-homophilic clusters, and vice
versa. We consider specifically the homophilic assumption in Section 4. Finally, in Section 5 we
discuss the implications and tightness of our results on particular families of graphs.

Main contributions.

1. We propose the problem of self-directed node classification.

2. We devise a polynomial time algorithm, called GOOD4, that learns any labeling given by
two convex clusters with at most 3(h(G)+ 1)4 lnn mistakes, where h(G) is the size of the
largest clique-minor of G (Theorem 8).

3. We devise a robust variant of our algorithm relaxing the convexity assumption, achieving a
mistake bound of 3(h(G) + 1)4 lnn + 4M∗, where M∗ is the minimum number of label
flips to obtain a convex labeling (Section 3.2).

4. We establish general lower bounds on the number of mistakes (Section 3.1) and explore
graph families for which our bounds are nearly optimal (Section 5).

5. For (not necessarily convex) homophilic labelings we develop a simple linear-time algo-
rithm achieving the mistake bound |∂ Cy |+ 1 where ∂ Cy is the cut-border induced by the
true labeling y, that is, all nodes that are adjacent to a node with different label (Proposi-
tion 12). We provide a related lower bound given in terms of the merging degree (Proposi-
tion 13).

Related work. Self-directed learning [Goldman and Sloan, 1994, Ben-David et al., 1997,
Ben-David and Eiron, 1998] is a variant of the standard online learning problem [Littlestone,
1988], which allows the learner to select the points itself instead of a worst-case adversary.
More recently, the mistake complexity of multi-class self-directed learning was characterized by
Devulapalli and Hanneke [2024]. Hanneke et al. [2023] provided mistake bounds in the related
sequence-transductive (also called worst-case sequence) offline model, which lies in between the
self-directed and the online variant. Diakonikolas et al. [2023] studied a self-directed variant of lin-
ear classification and Kontonis et al. [2023] tackled the corresponding regression problem. For node
classification, active learning [Afshani et al., 2007, Guillory and Bilmes, 2009, Cesa-Bianchi et al.,
2010] and online learning [Herbster et al., 2005, Cesa-Bianchi et al., 2009a, 2013, Herbster et al.,
2015] were considered so far. Only Herbster et al. [2005] stated first results on a budgeted variant
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of self-directed learning1 for node classification, where a fixed number of self-directed rounds are
performed and afterwards learning proceeds in the usual online setup. We close this gap and provide
first efficient algorithms and self-directed mistake bounds for node classification.

We focus on the problem of learning clusters that are geodesically convex, a well-studied variant
[Harary and Nieminen, 1981, Duchet and Meyniel, 1983, van de Vel, 1993, Pelayo, 2013] of stan-
dard Euclidean convexity. Seiffarth et al. [2023] studied supervised learning of such convex clusters
in a graph, Bressan et al. [2021] and Thiessen and Gärtner [2021] considered the active learning,
and [Thiessen and Gärtner, 2022] the online learning variant. Bressan et al. [2024] studied a related
setting of clusters that are closed under induced paths.

2 Preliminaries

Let G = (V,E) be a simple and connected graph. Here, simple refers to the fact that there is at
most one edge between any pair of nodes. For the rest of the paper, we always assume the graphs
to be connected and simple. Let y : V → Y be the node labels with Y = [k] = {1, . . . , k}, where
k ∈ N is the number of classes. Let n = |V | for the number of nodes. For all i ∈ [k], we call
Ci = {v ∈ V | y(v) = i} a cluster and let Cy = {C1, . . . , Ck}. We call an edge {u, v} ∈ E a
cut-edge if y(u) 6= y(v). A node incident to a cut-edge is a cut-node and the set of all cut-nodes is
called the cut-border, denoted by ∂ Cy .

We operate within the self-directed learning setting, which lies between classical active and online
learning. In this setting, the learner has access to the graph G and does not know the labels y. Then,
for each trial t = 1, . . . , n, we execute the steps

1. Learner selects vt ∈ V \ {v1, . . . , vt−1}.
2. Learner predicts ŷt(vt) ∈ [k].

3. Learner observes yt(vt) ∈ [k] and incurs a mistake iff ŷt(vt) 6= yt(vt).

The learner’s goal is to minimize the number of mistakes. Let M(A, y) be the number of mistakes
made by algorithm A on node set V with labeling y. Given a hypotesis space H ⊆ [k]V , we
denote by M(A,H) = maxy∈H M(A, y) the maximum number of mistakes A over all labelings
belonging to H. For k = 2, we denote the VC dimension (see, e.g., Vapnik and Chervonenkis
[1971], Shalev-Shwartz and Ben-David [2014]) ofH as vc(H). IfH is known to the learner and the
adversary predicts with a true labeling y ∈ H, this is known as the realizable setting. The (realizable)
self-directed learning complexity of a given H is M(H) = minA M(A,H), i.e., the number of
mistakes an optimal algorithm would make. For k = 2, this quantity is nicely characterized by
the rank of certain game trees [Ben-David et al., 1997, Ben-David and Eiron, 1998] similarly to the
Littlestone dimension [Littlestone, 1988] and was recently generalized to the multi-class case by
Devulapalli and Hanneke [2024]. We emphasize the difference to the more standard online learning
on graphs protocol, where by contrast the adversary selects the nodes in each step [Littlestone, 1988,
Herbster et al., 2005, Cesa-Bianchi et al., 2009a].

Figure 1: Example of a graph with a convex 2-labeling. In such labelings for any two nodes of the
same label, all nodes on every shortest path between them also share the same label.

Graph convexity. We focus on clusters that are (geodesically) convex, a notion closely related to
ordinary convex sets in Euclidean space. A cluster C ⊆ V is convex if and only if for all two nodes

1Herbster et al. [2005] call their budgeted variant of self-directed learning active learning.
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a, b ∈ C, also all nodes on every shortest path between a and b are in C. Note the resemblance to
the standard definition of convex sets in Euclidean space through line segments.

We introduce here just the required concepts and refer the reader to Duchet and Meyniel
[1983], van de Vel [1993], and Pelayo [2013]. Let IG(u, v) = I(u, v) = {x ∈ V |
x is on a shortest u-v path} be the (geodesic) interval for u, v ∈ V . A set C ⊆ V is convex if
and only if for all a, b ∈ C, it holds that I(a, b) ⊆ C. Convex sets in Euclidean space can be
similarly defined through I‖·‖

2
(u, v) = {x ∈ R

d | ‖u− x‖2 + ‖x− v‖2 = ‖u− v‖2}. Having
defined convex sets, we can define convex hulls conv(A) =

⋂
C⊇A,C convex C. If we only have two

clusters and both are convex, we call the labeling a convex bipartition or halfspace of the graph, see
Figure 1 for an example. One main subject of study in convexity theory are separation axioms, S1

to S4, which characterize the separation ability of halfspcaes [Bandelt, 1989, Chepoi, 1994, 2024].
We will only use the S4 separation axiom. We say a graph is S4 (i.e., it satisfies S4) if for any pair
A,B ⊆ V with conv(A) ∩ conv(B) = ∅ there exists a halfspace H ⊆ V such that A ⊆ H and
B ⊆ V \H .

Figure 2: Example of a graph with a K4-minor

Graph parameters. We denote by ω(G) the clique number of a graph G, that is, the size of the
largest clique that is a subgraph of G. A graph H is a minor of another graph G if H can be
derived from G by a sequence of edge contractions, edge deletions, and vertex deletions, see e.g.
Tutte [1961], Robertson and Seymour [1985] and an example in Figure 2. Here, contracting an edge
means merging the two nodes connected by the edge and removing the edge itself. We denote by
h(G) the Hadwiger number of G, which is the size of the largest clique minor in G. Intuitively
h(G) is a measure of sparsity of G. Another common sparsity measure is the treewidth tw(G),
quantifiying the tree-likeness of G. For a definition of treewidth see Robertson and Seymour [1984,
1986].

3 Self-directed learning of convex bipartitions

In this section, we introduce our main contributions, a polynomial time algorithm for self-directed
learning of halfspacesH of G achieving a near-optimal mistake bound. Full proofs can be found in
the Appendix.

Before we discuss our proposed algorithm, let us briefly consider existing algorithms and their draw-
backs.

Proposition 1 (Ben-David et al. 1997). LetH ⊆ 2V be an arbitrary (binary) hypothesis space with
|V | = n. Then, it holds that

Ω

(
vc(H)
lnn

)
≤ M(H) ≤ O(vc(H) lnn) .

The upper bound O(vc(H) lnn) can easily be achieved by the HALVING algorithm [Littlestone,
1988]. Thus, in the case of halfspaces on a graph, HALVING achieves the following mistake bound.

Proposition 2. Let G = (V,E) be a graph with n = |V | and letH be the set of convex bipartitions
of G. Then, M(HALVING,H) = O(h(G) lnn).

However, naively running HALVING requires a majority vote over the version space, i.e., the set of
all hypotheses that are consistent with the data so far, in each step. Unfortunately, computing the
version space for geodesic halfspaces is known to be NP-hard [Seiffarth et al., 2023]. We propose
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a new algorithm, GOOD4 (Good Quadruples), that has a better trade-off between computational
runtime complexity and the number of mistakes: GOOD4 runs in polynomial time and achieves a
similar mistake bound to HALVING.

Before presenting the actual algorithm let us start with some intuition and observations. We use the
fact that for large enough subsets of nodes in sparse graphs, shortest paths intersect. For that, let
us define a quadruple as a set {(a, b), (c, d)} containing two pairs of nodes (a, b) and (c, d), where
a, b, c, d, are four distinct nodes. We define a quadruple as a good quadruple if the shortest paths
connecting a to b and c to d intersect, that is, they share at least one common node. Said differently,
I(a, b) ∩ I(c, d) 6= ∅. If there are multiple shortest paths between a and b or between c and d, then
at least one shortest path from each pair should intersect. A sufficient condition for the existence of
a large number of good quadruples is that Hadwiger number is not too large.

Proposition 3. Let G be Kw-minor free (i.e., h(G) < w). Then, any subset of max(w, 4) nodes
contains a good quadruple.

We care about good quadruples {(a, b), (c, d)}, since they cannot be labeled arbitrarily, e.g., a, b ∈
C1 and c, d ∈ C2 is not possible as otherwise one of the two clusters would not be convex. For a
set U ⊆ V , we denote by Q(U) the set of quadruples in the U and by Qgood(U) the set of good
quadruples in U . By q(U) and qgood(U) we denote the size of the respective set. Next, we show that
good quadruples exist and that there is a significant number of them for each large enough set U .

Observation 4. Let G = (V,E) be a Kw minor-free graph. For any subset U ⊆ V of size at least
max(w, 4) nodes, the relative number of good quadruples qgood(U)/q(U) in U is at least 8/w4.

Next, we define ε-good nodes. The intuition is that good nodes participate in many good quadruples
with many other nodes. These are the nodes which we are going to select for prediction.

Definition 5 (ε-good node). Let U ⊆ V . A node a ∈ U is an ε-good node, if there exists a subset
Ua ⊆ U of size at least ⌈4ε(|U | − 1)⌉, such that for all b ∈ Ua, the number of pairs (c, d) ∈ U
resulting in good quadruples {(a, b), (c, d)} is at least

⌈
4ε

(|U | − 2

2

)⌉
, where ε(U) =

qgood(U)

8q(U)
.

In other words, for a good node a and for each b ∈ Ua it holds that the shortest paths between a and
b intersect with an qgood(U)

8q(U) fraction of shortest paths with endpoints in U . Next, we now show that
there exists at least one good node for each large enough set U .

Observation 6. Let G be Kw minor-free. Then, in any subset U ⊆ V of at least max(w, 4) nodes,
there exists an ε-good node and node participating in the biggest number of good quadruples is
ε-good node.

This leads to the following observation.

Observation 7. Let G be a Kw minor-free graph and U ⊆ V a set with at least max(w, 4) nodes.
Then, for a good node a ∈ U and every b in Ua, there exist at least ⌈ε(|U | − 2)⌉ nodes c′ ∈ U such
that for at least ⌈ε(|U | − 3)⌉ of the nodes d′ ∈ U , {(a, b), (c, d)} forms a good quadruple.

Our high-level idea is as follows. Using ε-good nodes we want to either learn a large number of
node labels without mistakes or on mistake discard a ε-fraction of good quadruples. That way we
can employ a Halving-like strategy on the set of all quadruples.

The main loop of GOOD4 (Algorithm 1) continues as long as there are good quadruples in the set
of unlabeled nodes U , i.e., |Qgood(U)| > 0. Each iteration of this loop involves the following four
main steps, constructing good quadruples {(a, b), (c, d)}. Step 1: find a good node a. We find a
good node a, predict an arbitrary label for it and observe the true label y(a). Step 2: find a good
corresponding node b. The algorithm initializes the variable mistake ← False, indicating that no
mistakes have been made yet. Then, it processes each node in U and finds the node b that together
with a participates in the maximum number of good quadruples {(a, b), (c, d)}. The algorithm
predicts for b the opposite label of a, ŷ(b) = 1 − y(a), observes the true label y(b), and removes b
from U (see Figure 3 for an example). The algorithm repeats this step as long as we do not make
any mistake and U is not empty. This process is referred to as selecting nodes b′ in decreasing order.
Step 3: find a good corresponding node c. If the prediction for any node b was incorrect, the
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Algorithm 1: GOOD4 Algorithm

input :Graph G = (V,E)
1 U ← V
2 while |Qgood(U)| > 0 do

/* Step 1: Find a good node a */

3 for a′ ∈ U do Qa′

good(U)← {{b, c, d} : {(a′, b), (c, d)} ∈ Qgood(U)}
4 a← argmaxa′∈U

∣∣∣Qa′

good

∣∣∣
5 predict arbitrarily ŷ(a); observe y(a); ỹ ← y(a); U ← U \ {a}

/* Step 2: Find corresponding node b */

6 mistake← False

7 for b′ ∈ U do Qa,b′

good(U)← {(c, d) : {(a, b′), (c, d)} ∈ Qgood(U ∪ {a})}
8 while mistake = False and |U | > 0 do

9 b← argmaxb′∈U

∣∣∣Qa,b′

good

∣∣∣
10 predict ŷ(b) = 1− ỹ; observe y(b); U ← U \ {b}
11 if ŷ(b) 6= y(b) then mistake← True

12 if mistake = False then continue
/* Step 3: Find corresponding node c */

13 mistake← False

14 for c′ ∈ U do Qa,b,c′

good (U)← {d : {(a, b), (c, d)} ∈ Qgood(U ∪ {a, b})}
15 while mistake = False and |U | > 0 do

16 c← argmaxc′∈U

∣∣∣Qa,b,c′

good

∣∣∣
17 predict ŷ(c) = ỹ; observe y(c); U ← U \ {c}
18 if ŷ(c) 6= y(b) then mistake← True

19 if mistake = False then continue
/* Step 4: Iterate over all corresponding d */

20 for d ∈ U s.t. {(a, b), (c, d)} ∈ Qgood(U ∪ {a, b, c}) do
21 predict ŷ(d) = ỹ; observe y(d); U ← U \ {d}
22 if ŷ(d) 6= y(d) then break

/* Step 5: Predict remaining labels */

23 predict arbitrary labels for any remaining nodes in U

a
c1 b3

d1 d2 d3 d4

b1

b2

c2

Figure 3: An example illustrating how GOOD4 operates. Here curves denote shortest paths and
two crossing curves are a good quadruple. Using the good quadruples {(a, b3), (c2, di)} for i ∈
{1, . . . , 4} we can infer the labels of the nodes di.

algorithm searches within U for another node c which together with a and this node b participates
in the maximum number of good quadruples {(a, b), (c, d)}. The algorithm predicts ŷ(c) = y(a)
for c, observes the true label y(c), and removes c from U . The algorithm repeats this step while
ŷ(c) = y(c) and U is not empty. This process is referred to as selecting nodes c′ in decreasing order.
If U becomes empty we exit from the algorithm. Step 4: predict labels for all such quadruples.
If the prediction for any node c was incorrect, the algorithm predicts the label y(a) for each node
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d, where {(a, b), (c, d) forms a good quadruple, learns true label of d and removes d from U . If
we made a prediction mistake we stop with this step. Step 5: predict remaining labels. If no
more good quadruples exist while the graph is still not fully labeled, we predict arbitrary labels for
the remaining nodes in U . This corresponds to the case when induced subgraph G[U ] is exactly a
complete graph K|U| or |U | ≤ 3.

Overall, this leads to our main result, which is the following bound on the number of mistakes of
GOOD4 for learning halfspaces.

Theorem 8. Let G = (V,E) be a graph with n = |V | and let H be the set of convex bipartitions
of G. Then, GOOD4 (Algorithm 1) runs in polynomial time in n and makes M(GOOD4,H) ≤
3(h(G) + 1)4 lnn mistakes.

We also developed a multi-class variant of GOOD4 leading again to a polynomial-time algorithm
guaranteeing at most a logarithmic number of mistakes in n, see Appendix D.

Correctness. Here, we give an overview of the proof, for a full analysis see Appendix B.2. By
Observation 4 we know that qgood(U)/q(U) for a sufficiently large U is at least 8

(h(G)+1)4 . Next,
using Observation 6, we see that ε-good node exist for sufficiently largeU and ε = qgood(U)/8q(U).
Per definition, this ε-good node a has many other nodes b′ such as for each b′, there are at least
4ε
(
|U|−2

2

)
good quadruples {(a, b′), (c, d)}, where ε is at least 1

8(h(G)+1)4 . In Step 1, we then
simply find a node a participating in the maximum number of good quadruples, which has to be
ε-good (for large enough U ). In Step 2, we either discover at least ε|U | labels or make a mistake on
a node b and move to Step 3. In the latter case as we selected the nodes b′ in decreasing order, the
node b and the ⌈4ε(|U | − 1)⌉ selected first all belong to the set Ua from Definition 5. Therefore, by
Observation 7 for b, there exist at least ⌈ε(|U | − 2)⌉ nodes c, such that for at least ⌈ε(|U | − 3)⌉ of
the nodes d, the quadruple {(a, b), (c, d)} is good. In Step 3, we take nodes c′ in decreasing order.
If we do not make mistakes among first ⌈ε(|U | − 2)⌉ nodes c′, we discover at least an ε|U | labels
in total; otherwise, we met a node c among first where we made a prediction mistake and go to Step
4. In Step 4, we use this node c. We know that there are many nodes d′ such that {(a, b), (c, d′)}
forms a good quadruple. So, we predict label y(a) for these d′. By convexity, we will no mistake
on all such nodes. Finally, we conclude that in total, at least ε|U | node labels were inferred during
these four steps. Thus, we overall do O(log1−ε(n)) = O(h(G)4 lnn) iterations of the while loop.

3.1 Lower bounds

Let us first show that the dependence on the Hadwiger number, without relying on further graph
parameters, is unavoidable in general.

Proposition 9. For any h, n ∈ N with h ≤ n, there exists a graph G with h(G) = h, |V | = n, and
convex bipartitionsH, such that M(H) = Ω(h).

For S4 graphs we get the following lower bound.

Proposition 10. Let G be an S4 graph with n nodes. Then, any algorithm learning learning a

convex bipartitions of G will make Ω
(

ω(G)
lnn

)
in the worst-case.

Thus, for the broad family of S4 graphs, we see that the mistake bound is largely determined by the
denseness of the graph, here in terms of the clique number ω(G). Only the gap between the clique
number and Hadwiger number remains. As we discuss in Section 5, this gap is typically quite small
for many graph families, such as chordal or bounded treewidth graphs.

3.2 Learning near-convex labelings

In real-world practical settings, it is unrealistic to expect that the node labeling will be convex. Even
if in particular tasks we can expect convex labelings, deviations from the ideal convex bipartition
are always possible. Therefore, let us consider a setting where the node labeling is not convex,
but, in some sense, close to convex. To measure the deviation from convexity, we introduce a very
natural concept. We call the labeling M∗-near-convex if it can be converted into a convex labeling
by flipping no more than M∗ nodes. This is related to the agnostic online setting of Ben-David et al.
[2009].

7



Theorem 11. GOOD4 can learn all labels in G with at most 4M∗ + 3(h(G) + 1)4 lnn mistakes,
where M∗ is the smallest integer such that the labeling of G is M∗-near-convex.

4 Learning homophilic labelings

Instead of assuming that the clusters are convex, it is more commomn to assume that the clusters Cy
are homophilic. We quantify that by assuming that the size of the cut-border |∂ Cy | is small. In this
setting, the following simple graph traversing strategy gives a bound of |∂ Cy |+ 1.
Proposition 12. Let G = (V,E) be a graph with n = |V | and m = |E|. Then, there exists an
algorithm TRAVERSE that learns in total linear time O(|V | + |E|) any (not necessarily convex)
labeling y ∈ kV with at most |∂ Cy |+ 1 mistakes.

To achieve a related lower bound we adapt a proof by Cesa-Bianchi et al. [2009b, 2011], which
holds for a different variant of the online learning setting. The lower bound is in terms of the
merging degree, another complexity measure of the cut-border. Here, we use a different definition
of clusters. Let a cluster be any maximal connected subgraph of G that is uniformly labeled. Note
that with this definition we can have up to n clusters even when k = 2. Given any cluster C, we
denote by ∂C its cut-border, by ∂C=∂C ∩ C its inner border, and by ∂C = ∂C \ ∂C its outer

border of C. Finally, the merging degree δ(C) of C is then defined as δ(C) = min(|∂C|, |∂C|).
The merging degree of the whole graph G, is defined as δ(G) =

∑
C∈Py

δ(C), where Py is the
partition into the clusters induced by y.
Proposition 13. Given any graph G and any integer c < n, there exists a labeling y satisfying
|δ(G)| ≤ 2c such that any algorithm makes at least c mistakes.

Thus, for k = 2 and two connected clusters C1, C2, the algorithm TRAVERSE achieves a near-
optimal mistake bound, as long as the cut-border is balanced, that is, the inner borders of C1 and C2

have roughly the same size.

5 Bounds for specific graph families

We discuss some broad families of graphs, where we achieve near-optimal mistake bounds.

Bounded treewidth graphs. Treewidth of a graph is a measure of “tree-likeness” and gives an upper
bound on the Hadwiger number h(G) ≤ tw(G) + 1. Many common graph families have bounded
treewidth. For example, trees, k-outerplanar graphs, Halin graphs, and series-parallel graphs all have
constant treewidth [see, e.g., Bodlaender, 1993] and hence also constant Hadwiger number. Thus,
on all such graphs we will make only O(lnn) many mistakes using GOOD4. Hyperbolic random
graphs have a treewidth ofO

(
(lnn)2

)
with high probability if the degree of the power law is chosen

as β ≥ 3 [Bläsius et al., 2016]. Here, we achieve a mistake bound of O
(
(lnn)3

)
.

Planar graphs. Planar graphs are a well known and broad graph family. They have Hadwiger
number at most 4. For planar graphs we can actually enumerate all halfspaces in polynomial time
using the algorithm of Glantz and Meyerhenke [2017]. This allows to run HALVING in polynomial
time and achieve a near-optimal mistake boundO(lnn). As the Hadwiger number is a constant for
planar graphs our algorithm GOOD4 achieves the same bound. The downside of the approach of
Glantz and Meyerhenke [2017] is that it is particularly tailored towards planar graphs and it seems
rather non-trivial to generalize it to more general families. Our algorithm GOOD4 can be applied on
all graphs, and in particular, on many near-planar graph families such as apex graphs it still achieves
a mistake bound of O(lnn).
Graphs with h(G) ≈ ω(G). A graph G is chordal if G contains no induced cycles of size four or
larger. Chordal graphs form a large graph family where ω(G) = h(G).
Proposition 14. Let G be chordal. Then, ω(G) = h(G).

Another such family are circular-arc graph, which are the intersection graphs of arcs on a circle.
Proposition 15 (Narayanaswamy et al. 2007). Let G be a circular-arc graph. Then, h(G) ≤ 2ω(G).

Corollary 16. Let G = (V,E) be a chordal graph or circular-arc graph with n = |V | and let
H be the set of convex bipartitions of G. Then, GOOD4 makes M(GOOD4,H) = O(ω(G)4 lnn)
mistakes.
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We see that the mistake complexity is largely determined by ω(G) for chordal graphs and by com-
bining this with Proposition 10, we see that this dependence is also necessary in general.

Bipartite graphs. Bipartite graphs are graphs without cycles of odd length.

Proposition 17. Let G be a bipartite graph andH its convex bipartitions. We can learn any labeling
inH with at most 2 mistakes in linear time.

For the special case of grid graphs (Cartesian product of two paths), we have the following tight
result even for k convex classes.

Proposition 18. Let G be any grid graph andH be the set of all its convex k-partitions, with k ≥ 2.
Thus we have M(H) ≥ k/4 and M(GRIDWALKER,H) ≤ 3k while GRIDWALKER runs in time
linear in n.

6 Discussion

In this section, we compare the self-directed learning setting with other learning settings, discuss
whether real-world graphs fit our assumptions, and state interesting directions.

Comparison with other learning models. Let us compare our bounds to previously known results
in active and online learning. In active learning the goal is to learn with a small number of queries
instead of the number of mistakes; essentially we skip step 2 of the our setup. It follows that the self-
directed learning mistake complexity is always smaller than the number of queries. In general, there
can be arbitrarily large gaps between the number of self-directed mistakes the number of queries.
For example, already on tree graphs the number of queries is linear in the number of leaves, while
the number of self-directed mistakes is at most 2.

Related issues arise in online learning, where an adversary chooses the nodes (in step 1 of our setup)
to be labeled instead of the learner. On one hand by Proposition 1 we know that the online and
self-directed mistake complexities are at most an O(ln(n)2) factors apart. On the other hand, the
best known efficient algorithm for halfspaces [Thiessen and Gärtner, 2022] has an online mistake
bound that depends on the largest ℓ such that the complete bipartite graph K2,ℓ is a minor of G, a
quantity typically much larger than the Hadwiger number. This term can be linear in n for planar
and bounded treewidth graphs, while we achieve a logarithmic number of self-directed mistakes.

Hadwiger number and sparsity of real-world graphs. Many notions to quantify the sparsity
of a graphs, besides Hadwiger number, exist [Nešetřil and De Mendez, 2012, Demaine et al., 2019].
One of the most studied assumptions is that the treewidth tw(G) of the graph is constant. For
such graphs, our polynomial time algorithm GOOD4 achieves a logarithmic number of mistakes
in n = |V | as h(G) ≤ tw(G) + 1. Indeed, many real-world graphs have small to moderate
treewidth. For example, communication networks [de Montgolfier et al., 2011], infrastructure based
networks [Maniu et al., 2019], and social contracts on blockchains [Chatterjee et al., 2019] tend to
have a small treewidth. Hyperbolic random graphs as discussed before have a small treewidth for
certain parameter choices and are often used to model social networks [Bläsius et al., 2016]. Also in
biology many networks with small treewidth arise, such as proteins [Peng et al., 2015] and protein-
protein-interaction networks [Blanchette et al., 2012]. RNA structures are known to typically have
a treewidth below 6 [Song et al., 2005]. Molecules tend to have treewidth 2 or 3. For example, the
molecules in the datasets NCI and PubChem (of size 250k and 135k molecules) have treewidth at
most 3 [Horváth and Ramon, 2010, Böcker et al., 2011]. Also 92-98% of molecules from common
small and large-scale molecular benchmark datasets have treewdith at most 2 [Bause et al., 2023].

Convexity of clusters in real-world graphs. While the most common bias for communities in
graphs is homophilicity, there is recent interest to develop graph learning approaches explicitly for
non-homophilic data [Lim et al., 2021]. One potentially appropriate, alternative bias is our con-
sidered assumption of convex or near-convex clusters. For example, Thiessen and Gärtner [2021]
showed that the majority of communities in large-scale real-world networks (like DBLP, Youtube,
and Amazon products) are indeed convex. Furthermore, Marc and Šubelj [2018] and Šubelj et al.
[2019] showed that infrastructure and collaboration networks have a “tree of cliques”-like struc-
ture leading to connected subgraphs being convex. Also in biology convex clusters arise, e.g., in
gene-similarity [Zhou et al., 2002] and protein interaction networks [Li et al., 2012].
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Open problems. This is the first paper on self-directed learning on graphs, so naturally several
questions remains unsolved. First of all, it is unclear what is the correct lower bound for convex
bipartitions. In particular, we do not know if it is possible to design algorithms whose mistake
bound depends polynomially on ω(G) instead of h(G) like in GOOD4. We actually conjecture that
the optimal mistake bound for convex bipartitions is ω(G) + 1. For example, it can be verified
that the conjecture holds for weakly median graphs [Thiessen and Gärtner, 2021]. Similar questions
hold for the multi-class case, in addition to establishing if a better analysis of multi-class GOOD4,
or a better algorithm, is possible.
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A Graphs with no big clique minor

Our GOOD4 Algorithm is designed to operate on (connected!) graphs which do not contain complete
graphs Kw as a minor, where w is a parameter. We describe how the algorithm efficiently restores
all labels in convex 2-labeling within these graphs with a maximum of 3w4 lnn mistakes, all while
operating within polynomial time in n. Then, we demonstrate that if the labeling is non-convex but
it can be made convex after flipping M∗ nodes, the mistake bound is then 4M∗+3w4 lnn, reflecting
an additive relationship with M∗.

Before introducing the algorithm, let us review our notation and discuss some properties of graphs
without complete graphKw as a minor. A graphH is a minor of another graphG if H can be derived
from G by a sequence of edge contractions, edge deletions, and removal of isolated nodes, see an
example in Figure 2. In this context, contracting an edge means merging the two nodes connected
by the edge and removing the edge itself. Now, suppose G = (V,E) does not contain any complete
graph Kw as a minor. Denote by U ⊆ V the unknown set, consisting of all nodes whose labels we
do not know. In a graph G, we define a quadruple as a set {(a, b), (c, d)} containing two unordered
pairs of nodes, (a, b) and (c, d), where a, b, c, and d are four distinct nodes from the unknown set U .
We define a quadruple as a good quadruple if the shortest paths connecting a to b and c to d intersect,
that is, they share at least one common node. If there are multiple shortest paths between a and b or
between c and d, then at least one shortest path from each pair should intersect. Let Q(U) denote
the set of all quadruples in U and q(U) its size. Similarly, let Qgood(U) and qgood(U) denote the
set of all good quadruples and their size, respectively.

We now list a number of propositions and observations that will simplify our proof.

Proposition 3. Let G be Kw-minor free (i.e., h(G) < w). Then, any subset of max(w, 4) nodes
contains a good quadruple.

Proof. If this were not the case we could consequently contract all edges on the shortest paths
between each pair of given w nodes and receive a clique Kw which contradicts the assumption that
G is a Kw-minor-free.

Proposition 19 (Kostochka 1984, Thomason 1984). Every graph on n nodes with no Kw-minor
hasO(nw√logw) edges.

Observation 4. Let G = (V,E) be a Kw minor-free graph. For any subset U ⊆ V of size at least
max(w, 4) nodes, the relative number of good quadruples qgood(U)/q(U) in U is at least 8/w4.

Proof. The total number of all quadruples is exactly 1
2

(
|U|
2

)(
|U|−2

2

)
= 3

(
|U|
4

)
=

|U|(|U|−1)(|U|−2)(|U|−3)
8 . For w > 4, consider the set of all possible combinations of w distinct

nodes from U . By Proposition 3, each set of w > 4 nodes contains a good quadruple. On the other
hand, each good quadruple can be extended in

(
|U|−4
w−4

)
ways up to the set of w distinct nodes. Hence,

the total number of good quadruples, is at least
(|U|

w )
(|U|−4

w−4 )
= |U|(|U|−1)(|U|−2)(|U|−3)

w(w−1)(w−2)(w−3) > |U|4

w4 and the

ratio of good quadruples to the total number of all quadruples is at least 8
w4 .

Let us define an ε-good node.

Definition 5 (ε-good node). Let U ⊆ V . A node a ∈ U is an ε-good node, if there exists a subset
Ua ⊆ U of size at least ⌈4ε(|U | − 1)⌉, such that for all b ∈ Ua, the number of pairs (c, d) ∈ U
resulting in good quadruples {(a, b), (c, d)} is at least

⌈
4ε

(|U | − 2

2

)⌉
, where ε(U) =

qgood(U)

8q(U)
.

In other words, for each b ∈ Ua we have that the shortest paths between a and b collectively intersect
with the qgood(U)

8q(U) fraction of the number of all other shortest paths connecting nodes from U . We
now show that there exists at least one good node in U .

Observation 6. Let G be Kw minor-free. Then, in any subset U ⊆ V of at least max(w, 4) nodes,
there exists an ε-good node and node participating in the biggest number of good quadruples is
ε-good node.
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Proof. Given that each quadruple contains four nodes and there are qgood(U) good quadruples, it

follows that some node a′ participates in at least
⌈
4qgood(U)

|U|

⌉
good quadruples. Let a denote the

node that participates in the most number of good quadruples. We claim that a is an ε-good node.
We prove it by contradiction. If a is not ε-good node, then the size of Ua can be written as ⌊4ε(|U |−
1)− t⌋, where t ≥ 0. Also, for the remaining |U | − ⌊(4ε(|U | − 1)− t)⌋ − 1 nodes the number of

pairs c, d ∈ U such as quadruple {(a, b), (c, d)} is considered good is strictly less than
⌈
4ε
(
|U|−2

2

)⌉
.

Hence, the number of good quadruples containing a cannot exceed ⌊(4ε(|U | − 1)− t)⌋
(
|U|−2

2

)
+

(|U | − ⌊(4ε(|U | − 1) − t)⌋ − 1)
⌊
4ε
(
|U|−2

2

)⌋
. By using Observation 4, we see that this number is

strictly less than
⌈
4qgood(U)

|U|

⌉
. However, this leads to a contradiction since a is required to participate

in at least the same amount of good quadruples as a′. Therefore, a good node a exists.

Observation 7. Let G be a Kw minor-free graph and U ⊆ V a set with at least max(w, 4) nodes.
Then, for a good node a ∈ U and every b in Ua, there exist at least ⌈ε(|U | − 2)⌉ nodes c′ ∈ U such
that for at least ⌈ε(|U | − 3)⌉ of the nodes d′ ∈ U , {(a, b), (c, d)} forms a good quadruple.

Proof. We prove it by contradiction. If there are no many c for which there are many d, the
number of good quadruples containing given good a and fixed b from b ∈ Ua cannot exceed
⌊(ε(|U | − 2)− t)⌋(|U | − 3) + (|U | − ⌊(ε(|U | − 2)− t)⌋ − 2)⌊ε(|U | − 3)⌋, where t ≥ 0. Note
that this expression is strictly less than 4ε

(
(|U|−2)

2

)
. This leads to a contradiction since we already

showed in Observation 7 that the number of good quadruples containing given the good node a and

fixed b from b ∈ Ua is at least
⌈
4ε
(
(|U|−2)

2

)⌉
.

B Binary classification

Here we describe the algorithm, called GOOD4 Algorithm, which we use for binary node classifica-
tion.

B.1 GOOD4 Algorithm description

The GOOD4 Algorithm iteratively reduces the number of nodes with unknown labels by predicting
the labels of nodes in good quadruples.

Initially, the algorithm takes as input a simple connected graph G = (V,E). It initializes the set of
nodes with unknown labels U as V . The function Qgood(U) is defined to output the set of all good
quadruples in U . The main loop of the algorithm continues as long as |U | > 0. At each iteration
of this main loop, if there are no good quadruples in the current set U , i.e., |Qgood(U)| = 0, the
algorithm predicts labels for all remaining nodes in U arbitrarily and terminates. Note that the case
|Qgood(U)| = 0 corresponds to the situation when induced subgraph G[U ] of the graph G is exactly
a complete graph K|U|.

Each iteration of this loop involves the following four steps.

Step 1. [Find a good node a]

For each node a′ ∈ U the algorithm computes the number of good quadruples {(a′, b), (c, d)} in
U containing a′ and then finds the node a that participates in the maximum number of these good
quadruples. The algorithm arbitrarily predicts the label ŷ(a) for a, (ŷ(a) can be either 0 or 1),
observes the true label y(a), stores y(a) in ỹ, and removes a from U .

Step 2. [find a good corresponding node b] The algorithm initializes the variable mistake ← False,
indicating that no mistakes have been made yet. Then, it processes each node b′ in the remaining
set U , computes the number of good quadruples {(a, b′), (c, d)} in U containing couple (a, b′) and
then finds the node b which together with a participates in the maximum number of these good
quadruples. The algorithm predicts the opposite label ŷ(b) = 1 − b̃ for b, observes the true label
y(b), and removes b from U , see Figure.3 as an example. The algorithm repeats this step while
ŷ(b′) = y(b′) and U is not empty. This process is referred to as selecting nodes b′ in decreasing

14



order. If U becomes empty we exit from the algorithm, because we predicted all labels. Otherwise,
i.e., we encountered the mistake and found a node b with the same label as node a, we go to Step 3.

Step 3. [find a good corresponding node c] If the prediction for a some node b is found to be
incorrect, the algorithm processes each node c′ in the remaining set U , computes the number of
good quadruples {(a, b), (c′, d)} in U containing both couple (a, b) and c′, and then finds the node
c which together with couple (a, b′) participates in the maximum number of these good quadruples.
The algorithm repeats this step while ŷ(c′) = y(c′) and U is not empty. This process is referred to
as selecting nodes c′ in decreasing order. If U becomes empty we exit from the algorithm.

Step 4. [find a good corresponding node d] If the prediction for a some node c is found to be
incorrect, the algorithm predicts the label ỹ to each node d′, where (a, b), (c, d′) forms a good
quadruple, learns true label of d′ and removes d′ fromU . This step continues until either an incorrect
prediction for d′ occurs or the set of such d′ becomes empty.

Step 5. [predict remaining labels] If no more good quadruples exist while the graph is still not fully
labeled, we predict arbitrary labels for the remaining nodes in U . This corresponds to the case when
the induced subgraph G[U ] is exactly a complete graph K|U| or |U | ≤ 3.

B.2 Analysis of the algorithm

The algorithm GOOD4 operates on a connected graph G = (V,E) with n vertices. It appears that
the algorithm can predict all labels with at most O(lnn) mistakes, even on graphs containing large
clique-minors, provided there are no large induced cliques in G. Nonetheless, we have rigorously
proven the result stated in Theorem 8. Note that the algorithm does not require knowledge of the
Hadwiger number h(G) beforehand. For graphs with Hadwiger number h(G), we established Obser-
vation 4, which states that in any sufficiently large U ⊆ V , the number of good quadruples qgood(U)

in U is at least 8
(h(G)+1)4 of the total number of all quadruples q(U) in U . Next, for ε =

qgood(U)
8q(U)

(which is at least 1
(h(G)+1)4 for graphs with Hadwiger number h(G)), we introduced the notion of

an ε-good node and proved Observation 6, which confirms the existence of such nodes in any suf-
ficiently large U ⊆ V . We also showed that the node a participating in the most number of good
quadruples is an ε-good. Hence, selecting a in Step 1 of the algorithm ensures a is an ε-good node
provided that |U | is large enough. Assuming |U | >

⌈
1
ε

⌉
+ 3 guarantees that |U | > h(G) + 1 and

that Observations 4, 6, and 7 hold. Note that if |U | becomes smaller, the number of mistakes made
by the algorithm is trivially at most |U |.
At Step 2 we either discover at least ε|U | labels or, by making one mistake at Step 2, move to Step
3. Consider the second case. Since we selected nodes b′ in decreasing order in the pseudocode, also
see GOOD4description) and a is an ε-good node, the node b where we did the mistake as well as
other first ⌈4ε(|U |−1)⌉ nodes selecting in accordance of this decreasing order, belongs to the set Ua,
where Ua is from Def. 5. Therefore, we may use Observation 7 to state that for this y, there exist at
least ⌈ε(|U |−2)⌉ nodes c′ such that for at least ⌈ε(|U |−3)⌉ of the nodes d′, such as {(a, b), (c′, d′)}
forms a good quadruple. Note that we do not claim that the labels of all c′ and d′ nodes are unknown,
because some of them might have already been observed during Step 2 when we checked nodes b′

in decreasing order.

At Step 3, we take c′ in decreasing order (line 16), ensuring we have many d′. If we do not make
mistakes among first ⌈ε(|U | − 2)⌉ nodes c′, we discover at least an ε|U | labels in total; otherwise,
we met a node c among first ⌈ε(|U | − 2)⌉ nodes which label we predicted with a mistake.

At Step 4, we operate with this wrongly predicted node c. We know that there are many d′ such that
{(a, b), (c, d′)} forms a good quadruple. So, we predict label ỹ for these d′. It is impossible for a
vertex d′ at Step 4 to be processed with a mistake. In such a scenario, both a and b would have the
label ỹ, while c and v would have the opposite label, 1 − ỹ, which is impossible when labeling is
convex. Finally, we conclude that in total, at least ε|U | labels were predicted during these four steps.

To conclude, at Step 5, given that there are no more good quadruples, we have that |U | ≤ h(G) and
in the worst case we commit a mistake on all the remaining nodes.

Now we are ready to state and prove Theorem 8.
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Theorem 8. Let G = (V,E) be a graph with n = |V | and let H be the set of convex bipartitions
of G. Then, GOOD4 (Algorithm 1) runs in polynomial time in n and makes M(GOOD4,H) ≤
3(h(G) + 1)4 lnn mistakes.

Proof. Mistake bound. In each round i of GOOD4 algorithm, we fix a good node a and learn at least
an ε-fraction of the labels from the current unknown set U , making no more than three mistakes.
This process incrementally reduces the size σ of the unknown set U at each round, that we represent
as the sequence

σ0 = |V |, σ1, . . . , σq,

where q is the total number of rounds after the very first one, such that the condition σq ≥
⌈
1
ε

⌉
+ 3

holds. Note that σi ≤ σi−1(1− ε) holds for each i ∈ [q]. Hence,

σq ≤ (1− ε)σq−1 ≤ . . . ≤ (1− ε)qσ0 = (1 − ε)qn.

Consequently, the number of rounds q needed after the very first one is bounded by ⌈log 1
1−ε

n
1
ε
+3
⌉.

The total number of mistakes made is thus upper bounded by 3⌈log 1
1−ε

n
1
ε
+3
⌉+ ⌈ 1ε⌉+ 3. Note that

by Observation 4, the ratio between good quadruples qgood(U) and the number of all quadruples
q(U) in any sufficiently large subset U of Kh(G)+1-minor-free graphs is at least 8

(h(G)+1)4 . Hence,

we have ε = qgood(U)
8q(U) ≥ 1

(h(G)+1)4 . Also, note that

3

⌈
log 1

1−ε

n
1
ε + 3

⌉
+

⌈
1

ε

⌉
+ 3 ≤ 3

ln n
1
ε
+3

ln 1
1−ε

+
1

ε
+ 7 ,

and the right-side is decreasing in ε on the intercept (0, 1). Hence, the number of mistakes does not
exceed

3 ln
(

n
(h(G)+1)4+3

)

ln
(

(h(G)+1)4

((h(G)+1)4−1)

) + (h(G) + 1)4 + 7 .

Finally, since ln (h(G)+1)4

(h(G)+1)4−1 = ln
(
1 + 1

(h(G)+1)4−1

)
> 1

(h(G)+1)4−1 − 1
2((h(G)+1)4−1)2 >

1
(h(G)+1)4 , the number of mistakes is less than 3(h(G) + 1)4 ln n

(h(G)+1)4+3 + (h(G) + 1)4 + 7 =

3(h(G) + 1)4(lnn− ln((h(G) + 1)4 + 3)) + (h(G) + 1)4 + 7 ≤ 3(h(G) + 1)4 lnn.

Note that we can find the set of all good quadruples in V inO(n4d) time. This bound can be derived
as follows: first, by using BFS algorithm compute the shortest path for each pair of vertices, which
takesO(n4). Then, for each of the pairs of shortest paths processed, we verify whether they intersect
in O(d) time, where d is a diameter of G. Once we found a set of all good quadruples in V all other
operations in the algorithm such as finding all good quadruples in U for some U , finding all good
quadruples in U containing a given vertex a, pair (a, b), pair (a, b) and node c as well as finding a,
pair (a, b), pair (a, b) and node c which maximize the number of good quadruples containing them,
is linear in size the set of all good quadruples in V .

C Learning near-convex binary labeling

In real-world practical scenarios, it is unrealistic to expect that node labeling will be convex. Even
if the requirements of a particular task dictate a convex labeling, deviations and errors from the
ideal scenario are always possible. Therefore, let us consider a scenario where the node labeling is
not convex, but is, in some sense, close to being convex. To measure the deviation from convexity,
we introduce a very natural concept. A labeling of the nodes is said to be M∗-near-convex if can
be converted into a convex labeling by flipping no more than M∗ nodes. Here “flipping” refers to
changing a node’s label from one state to another in binary labeling. Denote byM∗ this subset of
M∗ nodes.

Theorem 11. GOOD4 can learn all labels in G with at most 4M∗ + 3(h(G) + 1)4 lnn mistakes,
where M∗ is the smallest integer such that the labeling of G is M∗-near-convex.
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v1 v2 v3 v4 v5 v6

v7 v8 v9v10 v11

v12 v13 v14 v15

y(a1) = 1 y(b1) = 2 3 4 5 3

y(c1) = 3 y(c2) = 3 y(c3) = 2y(c1) = 2 y(c2) = 10

y(d1) = 2 5 6 1

3 /∈ Z

2 /∈ Z

Z = {3}Z = {2}

Z \ {1, 10}

Figure 4: An example illustrating how FindDistinctLabel algorithm operates.

Proof. Consider a quadruple {(a, b), (c, d)} as violating convexity if both a and b are labeled 0, while
c and d are labeled 1, or vice versa. By the definition ofM∗, at least one node among {a, b, c, d}
should belong toM∗. The algorithm exits from While-loop, when

1. it either predicts with at most three mistakes at least ε-fraction of unknown nodes

2. or with no more than four mistakes finds in U and then removes from U a violating con-
vexity quadruple {(a, b), (c, v)}. In this case, the size of M∗-set is decreasing at least one.

In each round i of GOOD4 algorithm, we fix a good node a and either learn at least an ε-fraction of
the labels from the current unknown set U or M∗ decreases at least by one. This process incremen-
tally reduces the size σ of the unknown set U at each round, that we represent as the sequence

σ0 = |V |, σ1, . . . , σq,

where q is the total number of rounds after the very first one, such that the condition σq ≥
⌈
1
ε

⌉
+ 3

holds. For each i ∈ [q], we have that σi−1 ≤ (1 − ε)σi or M∗ decreseas at least by one. Conse-
quently, the mistake bound is less than 4M∗ + 3h4 lnn, where 3(h(G) + 1)4 lnn is derived in the
same way as in the proof of Theorem 8.

D Multi-class classification

D.1 Algorithm description

FindDistinctLabel algorithm is an auxiliary algorithm designed to identify nodes whose label
differs from the labels of other nodes in a given set S. The algorithm inputs are graph G, set of
nodes S, and set of labels (colors) Z . FindDistinctLabel starts by checking if Z has only one
element (|Z| = 1). In this scenario, it processes each node a′ in S. If the label of a′ is unknown, it
assigns the single label z to each node a′ in S, predicting ŷ(a′) = z and observing the actual label
y(a′). Regardless of whether the label was previously known or just predicted, if y(a′) differs from
z, FindDistinctLabel(G,S, Z) exits and returns that node a′; otherwise, it continues to the next
node. If all nodes match z, it returns −1.

If the set of labels Z contains more than one label, the algorithm proceeds to the main part. It
computes ε =

|Qgood(S)|
8|Q(S)| . For each node a′ ∈ S, it identifies good quadruples containing a′. Then,
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Algorithm 2: Function FindDistinctLabel

input :Graph G = (V,E), set of nodes S, set of labels Z
1 Function FindDistinctLabel(G,S, Z):
2 if |Z| = 1 then

// recursion base

3 z ← the only element in Z
4 for a′ ∈ S do

// check each node in S

5 if y(a′) is unknown then
6 predict ŷ(a′) = z; observe y(a′) // if label of a′ is unknown,

predict z as label of a′ and observe the actual label

7 if y(a′) 6= z then
// applying this step to each node regardless of whether the

label was predicted just now or was already known

8 return a′ // return the node a′

9 return -1 // all nodes in S predicted correctly

10 ε← |Qgood(S)|
8|Q(S)| // calculate ε

11 for a′ ∈ S do
// for each node a′ in S

12 Qa′

good(S)← {(b, c, d) | {(a′, b), (c, d)} is a good quadruple} // find good

quadruples containing a′

13 a← argmaxa′∈S |Qa
good| // find the node participating in the maximum

number of good quadruples

14 if y(a) is unknown then
15 predict arbitrary ŷ(a) from Z; observe y(a)

16 if y(a) /∈ Z then return a
17 Ya ← {b′ ∈ S |

there are at least ⌈2ε(|S| − 2)(|S| − 3)⌉ pairs (c, d) such that {(a, b′), (c, d)} is a good quadruple}
// update Ya, applying this step to node a regardless of whether the

label was predicted just now or was already known

18 b← FindDistinctLabel(G, Ya, Z \ {y(a)}) // recursive call

19 if b = −1 then return -1
// a big fraction of nodes from Ya predicted correctly

20 if y(b) 6= y(a) then return b
// found node with label outside of Z \ {y(a)} and not y(a), i.e. outside

of Z

21 Yab ← {c′ ∈ S |
there are at least ⌈ε(|S| − 3)⌉ nodes d such that {(a, b), (c′, d)} is a good quadruple}
// update Yab

22 c← FindDistinctLabel(G, Yab, {y(a)}) // recursive call

23 if c = −1 then return -1
// all nodes in Yab predicted correctly

24 if y(c) /∈ Z then return c
// found node with label outside Z

25 Yabc ← {d′ ∈ S | {(a, b), (c, d′)} is a good quadruple} // update Yabc

26 d← FindDistinctLabel(G, Yabc, Z \ {y(c)}) // recursive call

27 if d = −1 then return -1
// a big fraction of nodes from Yabc predicted correctly

28 if y(d) = y(c) then return -1
// labeling is not convex

29 return d // else y(d) is not in Z \ {y(c)} and y(d) 6= y(c), so y(d) is not in Z
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Algorithm 3: Multiclass version of the algorithm GOOD4

input :Graph G = (V,E), set of labels Z
1 U ← V
2 while |Qgood(U)| > 0 do
3 FindDistinctLabel(G,U, Z)
4 Erase from U all nodes with known labels

5 predict arbitrary labels for any remaining nodes in U

it selects the node a, which participates in the most number of good quadruples among all a′ ∈ S.
If the label of a is unknown, it predicts an arbitrary label ŷ(a) from Z and observes the true label
y(a). Regardless of whether the label y(a) was previously known or just predicted, if y(a) /∈ Z ,
FindDistinctLabel(G,S, Z) exits and returns that node a.

Next, the set Ya is updated to include nodes b′ for which there are enough good quadru-
ples {(a, b′), (c, d)}. Namely, there are at least ⌈2ε(|S| − 2)(|S| − 3)⌉ pairs (c, d) such that
{(a, b′), (c, d)} is a good quadruple . The algorithm then recursively calls the FindDistinctLabel
function with graph G, set Ya, and Z \ {y(a)}, see Figure 4 for an example. The variable b is
assigned the result of the FindDistinctLabel function. This process continues recursively, going
deeper and incrementingZ . As the recursion unwinds, the algorithm checks each result step-by-step.
During the unwinding, the algorithm verifies the outcomes of the recursive calls: if it encounters−1,
it returns −1; otherwise, it checks if a current node a is found with a label y(a) = y(b). Once such
node a is found, the algorithm starts working with the set Yab.

The set Yab is updated to include nodes c′ ∈ S for which there are enough good quadruples
{(a, b), (c′, d)}. The algorithm recursively calls the FindDistinctLabel function with graph G,
set Yab, and {y(a)}. The variable c is assigned the result of the FindDistinctLabel function. If
the recursive call returns −1, the algorithm returns −1. If the label of node c found in the recursive
call is not y(a), the algorithm returns this node c. Once such node c is found, the algorithm starts
working with the set Yabc.

The set Yabc is updated to include nodes d′ ∈ S for which there are enough good quadruples
{(a, b), (c, d′)}. Then, it recursively calls the FindDistinctLabel function with the graph G,
the set Yabc, and Z \ {y(c)}. Note that Z here is decreasing. The variable d is assigned the result of
the FindDistinctLabel function. If the recursive call returns−1, the algorithm returns−1. If the
label of the node d found in the recursive call is the same as y(c), the algorithm returns −1. If the
label of node d differs from y(c) and is not in Z , the algorithm returns node d.

FindDistinctLabel(G,S, Z) might take the same nodes multiple times—for instance, a node
might be selected as b′, later as c′, and then as d′. But the algorithm predicts only unknown labels,
thanks to a conditional check for label status.

Multiclass version of Good4 predicts labels for nodes in a graph G = (V,E) with a given set
of labels Z . It starts by initializing set U to contain all nodes in V , indicating that initially, all node
labels are unknown. The algorithm then enters a while loop that continues as long as there are good
quadruples in U . Within the loop, the function FindDistinctLabel is called with graph G, set U ,
and labels Z . This function tries to find a node in U whose label is distinct from the labels in Z .
After each call to FindDistinctLabel, the algorithm removes nodes with known labels from U .
Once the loop terminates, indicating that there are no more good quadruples, the algorithm assigns
arbitrary labels to any remaining nodes in U .

D.1.1 Correctness.

Proposition 20. FindDistinctLabel(G,S, Z)makes at most 3 · 2|Z|−1 − 2 mistakes and

• either finds and returns node in S, which label does not belong to Z ,

• either reveals at least ε|Z|−1|S| labels in S and returns −1,

• either finds in S a quadruple that violates convexity, reveals all labels of these four vertices,
and returns −1.
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Proof. We prove the statement by induction on the size of |Z|.
Base case: For |Z| = 1, there is only one label, the algorithm makes no more than one mistake and
returns either node in S, which label does not belong to Z , either reveals at least |S| labels in S and
returns−1. The statement is true.

Inductive step: Assume the statement holds for |Z| = k. We must show that it also holds for
|Z| = k + 1.

We go through all the points where the algorithm might terminate and verify that it has accomplished
what was claimed and which of the three possibilities was fulfilled.

If we terminate at y(a) /∈ Z , line 16, then the algorithm returned a node with a label not in Z
(because we just checked that in the ‘if‘ statement) and the number of mistakes is at most 1.

If we terminate at b = −1, line 19, then by the induction hypothesis, the recursive call either already
has found a violated convexity quadruple (in which case we can return −1, as a violated convexity
quadruple is found), or it has determined at least ε|Z|−1|Ya| labels. Using the fact that |Ya| ≥ ε|S|
due to Observation 6 and the definition of ε-good node, we get that at least ε|Z||S| labels were
determined, and we can return−1. The number of mistakes is at most 1+(3·2k−1−2) = 3·2k−1−1.

If we terminate at line y(b) 6= y(a), then the algorithm returned a node with a label not in Z and the
number of mistakes is at most 1 + (3 · 2k−1 − 2) = 3 · 2k−1 − 1.

If we terminate at c = −1, line 23, then by the induction hypothesis, the recursive call either
already has found a violated convexity quadruple (in which case we can return −1, as a violated
convexity quadruple is found), or it has determined at least ε|Z|−1|Yab| + 2 labels. Using the fact
that |Yab| ≥ ε(|S|−2) due to Observation 7, we get that at least ε|Z||S| labels were determined, and
we can return −1. The number of mistakes is at most 1 + (3 · 2k−1 − 2) = 3 · 2k−1 − 1.

If we terminate at y(c) /∈ Z , line 24, then the algorithm returned a node with a label not in Z and
the number of mistakes is at most 1 + (3 · 2k−1 − 2) + 1 = 3 · 2k−1.

If we terminate at d = −1, line 27, then by the induction hypothesis, the recursive call either
already has found a violated convexity quadruple (in which case we can return −1, as a violated
convexity quadruple is found), or it has determined at least ε|Z|−1|Yabc| + 3 labels. Using the fact
that |Yabc| ≥ ε(|S| − 3) due to Observation 7, we get that at least ε|Z||S| labels were determined,
and we can return −1. The number of mistakes is at most 1 + (3 · 2k−1 − 2) + 1 = 3 · 2k−1.

If we terminate at y(d) = y(c), line 28, then found a violated convexity quadruple (in which case
we can return −1, as a violated convexity quadruple is found). The number of mistakes is at most
1 + (3 · 2k−1 − 2) + 1 + (3 · 2k−1 − 2) = 3 · 2k − 2.

If we return d, line 29, then the algorithm returned a node with a label not in Z and the number of
mistakes is at most 1 + (3 · 2k−1 − 2) + 1 + (3 · 2k−1 − 2) = 3 · 2k − 2.

For graphs with Hadwiger number h(G), we established Observation 4, which states that in any
sufficiently large S ⊆ V , the number of good quadruples qgood(S) in S is at least 8/(h(G) + 1)4

of the total number of all quadruples q(S) in S. Next, for ε = qgood(S)/8q(S) (which is at least
1/(h(G) + 1)4 for graphs with Hadwiger number h(G)), we introduced the notion of an ε-good
node and proved Observation 6, which confirms the existence of such nodes in any sufficiently large
S ⊆ V . We also showed that the node a participating in the most number of good quadruples is
an ε-good. Hence, selecting a, the algorithm ensures a is an ε-good node provided that |U | is large
enough. The algorithm recursively calls itself no more than |Z| times to find a node b such that
y(b) /∈ Z . If a such node b is not found, then a big fraction of labels is predicted correctly, because
we checked all nodes in the current set Ya and Ya is big enough due to Observation 6. If a such b
is found, then propagated back through all levels of recursion the algorithm finds a node a such as
y(a) = y(b). Note that such node a exists since y(b) does not belong to the current set Z , but was at
initial set Z . The algorithm then searches for a node c ∈ Yab with y(c) 6= y(a). If such a node c is
found, the algorithm starts a new recursive call with depth at most Z − 1. Since our Observation 7
guarantees that each of Ya,b,c, Yab and Ya include at least ε|S| nodes and we proved Proposition 20,
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it can be concluded that for each round of Multiclass version of Good4, at least εk|U | nodes
become predicted provided U is big enough.

Now note that |U | ≥
(⌈

1
ε

⌉
+ 3

)k
with Proposition 20 guarantee that if FindDistinctLabel re-

turns −1 and labeling is convex, then at least ε|Z|−1|S| labels have been observed after the current
recursion call with set S. So, the size |S| remains larger than

⌈
1
ε

⌉
+ 3 ≥ h(G) + 1 at all recursion

levels (lines 18, 22,26). Hence, Observation 4, Observation 6, and Observation 7 hold. Note that if
|U | becomes smaller, the number of mistakes made by the algorithm is trivially at most |U |.
FindDistinctLabel always ends evaluations due to Proposition 20 and that both sets S and Z are
bounded. On the other hand, Algorithm Multiclass version of Good4 always ends because
the size of U is bounded and after each round it removes at least (h(G) + 1)−k|U | nodes when

|U | ≥
(⌈

1
ε

⌉
+ 3

)k
.

Theorem 21 (for convex k-partition). Let G = (V,E) be a graph with n nodes and Hadwiger
number h(G). Suppose the k-labeling of nodes in G is convex, where k is a constant. Then, there
exists a polynomial-time algorithm Multiclass version of GOOD4, that can restore all labels in G
with O(2k(h(G))4k lnn) mistakes.

Proof. Mistake bound. In our settings the number of clusters |Z| = k. At the end of each round i
of Multiclass version of Good4, the algorithm learns at least εk|U | labels from the unknown
set U or finds four nodes that violate convexity. In the first case, the algorithm makes no more than
2k mistakes, for details see D.1.1. The second case is impossible because labeling is convex. This
process reduces the size of the unknown set U , leading to a sequence of sizes of the unknown set U :

σ0 = |V |, σ1, . . . , σq,

where q is the total number of rounds after the very first one, such that the condition σq ≥(⌈
1
ε

⌉
+ 3

)k
holds. We also have that σi ≤ σi−1(1− εk) holds for each i ∈ [q]. Hence,

σq ≤ (1− εk)σq−1 ≤ . . . ≤ (1− εk)qσ0 = (1− εk)qn.

Consequently, the number of rounds needed is O(log1/(1−εk) n) = O
(
lnn
εk

)
. The total number of

mistakes made is thusO
(
2k

(
lnn
εk

))
+O

((⌈
1
ε

⌉
+ 3

)k)
= O(2k(h(G))4k lnn).

E More missing proofs

Proposition 2. Let G = (V,E) be a graph with n = |V | and letH be the set of convex bipartitions
of G. Then, M(HALVING,H) = O(h(G) lnn).

Proof. The claim immediately follows by combing Proposition 1 and the fact that vc(H) =
O(h(G)) for halfspacesH [Duchet and Meyniel, 1983, Thiessen and Gärtner, 2021].

E.1 Lower bounds

Proposition 9. For any h, n ∈ N with h ≤ n, there exists a graph G with h(G) = h, |V | = n, and
convex bipartitionsH, such that M(H) = Ω(h).

Proof. Take the clique on h nodes and a path with n− h nodes attached to one of the nodes of the
clique. If the path belongs to one cluster, we can force h mistakes on the clique.

Proposition 10. Let G be an S4 graph with n nodes. Then, any algorithm learning learning a

convex bipartitions of G will make Ω
(

ω(G)
lnn

)
in the worst-case.

Proof. LetH be the set of halfspaces of G. It is well known that any algorithm will make Ω
(

vc(H)
lnn

)

in the worst-case [Ben-David et al., 1997]. Additionally, it is easy to see that in S4 graphs any clique
is shatterable Hence, vc(H) ≥ ω(G).
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E.2 Homophilic labelings

Proposition 12. Let G = (V,E) be a graph with n = |V | and m = |E|. Then, there exists an
algorithm TRAVERSE that learns in total linear time O(|V | + |E|) any (not necessarily convex)
labeling y ∈ kV with at most |∂ Cy |+ 1 mistakes.

Proof. TRAVERSE follows the following strategy. We run a basic graph traversing algorithm, such
as, BFS or DFS. We predicts an arbitrary label for the first node v1 ∈ V . Then, for all t ≥ 2,
every time a new node is visited it is a neighbour vt ∈ V \ {v1, . . . , vt−1} of a previously explored
neighbour v ∈ {v1, . . . , vt−1} of vt. This is the case as G is connected. For vt we predict ŷt = y(v)
(we already know y(v)). We will only make a mistake if vt is a cut-node, resulting in the claimed
bound. As TRAVERSE runs just one graph traversal overall to learn y the runtime follows.

We now show an adaptation of a lower bound presented by Cesa-Bianchi et al. [2009b, 2011] which
holds for a different variant of the online learning setting, when k = 2. The mistake bound is
expressed as a function of a complexity measure called merging degree, which intuitively is related
to the cut-border Cy . We now recall the definition of this measure provided by Cesa-Bianchi et al.
[2009b, 2011]. For ease of explanation, in this lower bound we use a definition of cluster that is
different from the one provided for the elements of Cy: Let a cluster be any maximal connected
subgraph of G that is uniformly labeled. Note that with this definition we can have up to n clusters
even when k = 2. Given any cluster C, we denote by ∂C the subset its vertices adjacent to nodes
belonging to other clusters – called inner border of C. We also denote by ∂C the set of all nodes that
do not belong to C and are adjacent to at least one node in ∂C – called outer border of C. Finally,
the merging degree δ(C) of C is then defined as δ(C) = min{∂C, ∂C}. The merging degree of the
whole graph G, is defined as δ(G) =

∑
C∈Py

δ(C), where Py is the partition into the above defined
clusters induced by y.

Proposition 13. Given any graph G and any integer c < n, there exists a labeling y satisfying
|δ(G)| ≤ 2c such that any algorithm makes at least c mistakes.

Proof. The proof is a straightforward adaptation of the one of Theorem 2 in Cesa-Bianchi et al.
[2009b, 2011]. The learning setting used in these two papers is not transductive, i.e., the input
graph not known beforehand, in that it is revealed in an incremental fashion. More precisely, let
Vt be the subset of all nodes of V observed by the learner until time t. During the very first trial
t = 1, the learner is required to predict the label of an arbitrarily chosen node v1 ∈ V , and we
have V1 := {v1}. Then, at each trial t = 2, 3, . . . , n, it selects a node qt ∈ Vt−1 belonging to the
node set of the connected subgraph Gt−1=(Vt−1, Et−1) of G(V,E) induced by Vt−1, where Et−1

is therefore the subset of all edges in E connecting any two nodes in Vt−1 for t > 2, while E1 := ∅.
At any time t ≥ 2, the learner selects qt ∈ Vt−1 such that there exists at least one node adjacent to
it in V \ Vt−1, receives a new vertex vt adjacent to qt with all edges connecting it with the nodes in
Vt−1, and is required to output a prediction ŷ(vt) for label y(vt) ∈ R, while Vt := Vt−1∪{vt}. Then,
y(vt) is revealed and the learner incurs a (real) loss measuring the discrepancy between prediction
and true label, which is defined to be equal to |y(vt)− ŷ(vt)|.
The proof of Theorem 2 in Cesa-Bianchi et al. [2009b, 2011] can be easily adapted to our context
because it does not exploit the non-transductive nature of that learning setting, and we can view each
label as the integer in [k] = {1, 2} of the corresponding class,2 thereby using a 0/1 loss.

More precisely, following the original proof, let G0=(V0, E0) be an arbitrarily selected connected
subgraph of G=(V,E) such that |V0| = n− c. Let V ′ be the set of c nodes V \ V0. We can choose
one arbitrary label in [k] for all the nodes of V0, and force one mistake for the prediction of the label
of each node in V ′. We now need to show that each δ(G) ≤ 2c. Note that G0 must be a subgraph
of a cluster C0 ∈ Py determined by the algorithm’s predictions. Furthermore, the number of nodes
of C0 cannot be smaller than |V0| = |V | − c, which implies δ(C0) ≤ ∂C0 ≤ |V ′| = c. For what
concerns the other clusters in Py \ C0, we have

∑
C∈Py\C0

δ(C) ≤ ∑
C∈Py\C0

∂C ≤ |V ′| = c.
Hence, we have δ(G) = δ(C0) +

∑
C∈Py\C0

δ(C) ≤ 2c, thereby concluding the proof.

2Note that this ensures that the partition induced by y is regular according to Section 3 of Cesa-Bianchi et al.
[2011], because the difference between any two labels within the same cluster is always smaller (equal to 0)
than the one between two labels belonging to two different clusters (equal to 1).
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E.3 Graph families

Proposition 17. Let G be a bipartite graph andH its convex bipartitions. We can learn any labeling
inH with at most 2 mistakes in linear time.

Proof. We can find any cut-edge {u, v} with at most two mistakes. Using the cut-edge, we infer
labels all other nodes x by comparing distances d(u, x) and d(v, x), where d(·, ·) is the length of
shortest path between two given nodes.

E.4 Graph families

Proposition 14. Let G be chordal. Then, ω(G) = h(G).

Proof. It is well known that ω(G) = tw(G) + 1 for chordal graphs, in fact, it is one of the ways to
define treewidth. Moreover, h(G) ≤ tw(G) + 1 as tw(H) ≤ tw(G) holds for all minors H of G
and tw(Kc) = c − 1 for the complete graph on c nodes, see, e.g., Diestel [2017]. Combining this
with ω(G) ≤ h(G) we get ω(G) = h(G).

E.5 Grid graphs

Here we prove Proposition 18 and discuss the GRIDWALKER algorithm in two separate theorems.

Without loss of generality, we assume that the input grid graph G is represented using an n × 4
matrix M , where, for all i ∈ [n], the elements of the i-th row are the indices of the nodes adjacent
to i-th node arranged in a clockwise order, viz., starting from the node positioned at the top in
the conventional representation of a grid graph on a plane. In the special case of the nodes with
degree smaller than 4, the entries corresponding to nodes that are missing in this representation, are
conventially set to be equal to 0.

Theorem 22. There exists an algorithm that, operating within the self-directed learning setting,
makes not more than 3k mistakes for any input grid graph G(V,E) and any convex labeling y :
V → [k], while its time complexity is linear in n.

Proof. For any subgraphG′ of G, we denote by V (G′) its node set. Given any vertex subset V ′ ⊆ V ,
we denote by G(V ′) the subgraph of G induced by all the nodes in V ′. We call any two clusters
C and C′ adjacent iff there exists an edge {u, v} ∈ E such that u ∈ V (C) and v ∈ V (C′). We
say that a cluster is discovered when one of its node labels is revealed for the first time. We prove
the theorem by showing a linear time procedure that ensures to discover all the clusters of G and,
whenever a cluster is discovered, we can infer all its labels by making not more than 3 mistakes.

Given any clusterC of the input grid graphG, we say that a node v is at the corner of C (corner node)
if its degree in C is at most 2 if C is not a path graph3, and is equal to 1 otherwise. Analogously, we
say that a node v is at the border of C (border node) if its degree in C is at most 3 if C is not a path
graph, and is equal to 2 otherwise. Hence, each corner node for a cluster C is also one of its border
nodes. Finally, we call the border of G, denoted by ∂G, the subgraph of G formed by all nodes with
degree at most 3. For the sake of the simplicity of this explanation, we say that a node is visited if
we selected it, predicted its label and received its true label. Finally, we assume that the number of
clusters k is larger than 1.

We leverage the following simple property: once we have a border node of a cluster C, we can find
two opposite corner nodes of C, i.e., a pair of corner nodes of C such that the geodesic distance
between them is maximal, by making at most 3 mistakes. Finding two opposite corner nodes of C
clearly implies that we can infer all the labels assigned to its nodes. We now describe the method to
find two opposite corner nodes of any given cluster C making at most 3 mistakes, by starting visiting
one of its border node v. For now, we assume that C is not a path graph (which also includes the
case where V (C) consists of only one node), and we treat the path clusters later separately in the
last part of the proof.

3Note that if V (C) consists of one node, C is still a path graph.
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If v is a corner node, we choose a node v′ adjacent to v in C, and we visit one after the other the
nodes on the path starting from v and including v′, until we visit the first node u that does not belong
to V (C), i.e., having a different label4, or we visit one of the nodes of ∂G. Let u′ be the node of
V (C) adjacent to u in the former case, and the last node visited so far of C in the latter case. u′

must be in both cases a corner node of C.

Then we proceed by visiting one by one all nodes in the path all contained in C that starts from u′

and do not include any other node of the path connecting v with u′, until, again, we visit the first
node w that does not belong to C, or we visit one of the nodes of ∂G. Let now w′ be the node of
V (C) adjacent to u′ in the former case, and the last node visited so far of C in the latter case. w′

must be in both cases a corner node of C. We finally conclude by visiting the path all contained in C
starting from w′ until we visit the first node z that does not belong to C, or we find one of the nodes
of ∂G. It is immediate to verify that, by the construction of this procedure, the last node visited
belonging to C is the corner node opposite to u′, so that we can infer all labels of C. Furthermore,
since the number of cut-edge traversed is at most 3, one for each of the paths described above, the
maximum number of mistakes made by predicting each label as equal to the one of the last node
visited is 3.

We consider now the case where C is a path graph. If v ∈ V (C) is the first node visited of V , using
the above described method we can always predict all labels of C making at most 3 mistakes as
follows. We can infer the labels of all nodes of a sub-path of C, find one of the two terminal nodes
of C, make at most two mistakes, and return back to v to visit the remaining part of C until we either
visit a node that does not belong to C making one additional mistake, or we visit one of the nodes of
∂G. Note that this holds even in the degenerate case where C consists of only one node. If, instead,
v is not the first node visited of V , we always know that there is a cut-edge between v and some
node u ∈ V which does not belong to V (C) and we can apply the above strategy by visiting a node
v′ adjacent to v in C, i.e, such that the geodesic distance between z and v is exactly equal to 2, and
proceeding as in the the case where C is path graph and v is the first node visited of V .

It is essential to note that each of the node visited of any cluster C′ 6≡ C must be, by definition, a
border node of an adjacent cluster, which allows us to use this procedure to infer the labels of other
clusters. Finally, it is also immediate to verify that if we start visiting a node that must be at the
border of some clusters, i.e., a node with degree 3 in G, at any trial there must be a cluster adjacent
to the ones visited so far such that we already visited one of its border nodes, which ensures that
keeping applying this procedure we visit all the clusters of G, proving the claimed mistake bound.

For what concerns the time complexity, if we use (1) a queue data structure to enqueue each (border)
node visited whenever we discover its cluster, (2) we mark all visited nodes as processed, and (3)
we dequeue the new (border) node and start find the labeling of its cluster as described above iff it
is not marked as processed, then the worst-case running time of this strategy must be clearly linear
in n, thereby concluding the proof.

Theorem 23. For any input grid graph G=(V,E), there exists a random convex node labeling
y : V → [k] such that any algorithm A (randomized and deterministic) operating within the self-
directed learning setting is forced to make in expectation over the randomization of y at least k −
Hk ≥ k

4 mistakes, where Hk is the k-th harmonic number
∑k

j=1
1
j .

Proof. Without loss of generality, we assume that A knows the whole partitioning of G into clusters.
For any partition of G into k clusters, there are k! possible label assignments. If y is selected
uniformly at random from such set of all possible labelings, then A makes in expectation 1 − i

k
mistakes on the i-th cluster discovered for all i ∈ [k]. Summing this quantity over all clusters we
obtain

∑k
i=1

(
1− i

k

)
= k −Hk, as claimed.

4We can also have that v′ and u are the same node.
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